• 제목/요약/키워드: Gene Network

검색결과 557건 처리시간 0.025초

연판 지식을 이용한 유전자 발현 데이터 분석: 퍼지 플러스링과 조절 네트웍 모델링에의 응용 (In-silico inferences for expression data using IGAM: Applied to Fuzzy-Clustering & Regulatory Network Modeling)

  • Lee, Philhyone;Hojeong Nam;Lee, Doheon;Lee, Kwang H.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.273-276
    • /
    • 2004
  • Genome-scale expression data provides us with valuable insights about organisms, but the biological validation of in-silico analysis is difficult and often controversial. Here we present a new approach for integrating previously established knowledge with computational analysis. Based on the known biological evidences, IGAM (Integrated Gene Association Matrix) automatically estimates the relatedness between a pair of genes. We combined this association knowledge to the regulatory network modeling and fuzzy clustering in yeast 5. Cerevisiae. The result was found to be more effective for extracting biological meanings from in-silico inferences for gene expression data.

  • PDF

Comparative co-expression analysis of RNA-Seq transcriptome revealing key genes, miRNA and transcription factor in distinct metabolic pathways in diabetic nerve, eye, and kidney disease

  • Asmy, Veerankutty Subaida Shafna;Natarajan, Jeyakumar
    • Genomics & Informatics
    • /
    • 제20권3호
    • /
    • pp.26.1-26.19
    • /
    • 2022
  • Diabetes and its related complications are associated with long term damage and failure of various organ systems. The microvascular complications of diabetes considered in this study are diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. The aim is to identify the weighted co-expressed and differentially expressed genes (DEGs), major pathways, and their miRNA, transcription factors (TFs) and drugs interacting in all the three conditions. The primary goal is to identify vital DEGs in all the three conditions. The overlapped five genes (AKT1, NFKB1, MAPK3, PDPK1, and TNF) from the DEGs and the co-expressed genes were defined as key genes, which differentially expressed in all the three cases. Then the protein-protein interaction network and gene set linkage analysis (GSLA) of key genes was performed. GSLA, gene ontology, and pathway enrichment analysis of the key genes elucidates nine major pathways in diabetes. Subsequently, we constructed the miRNA-gene and transcription factor-gene regulatory network of the five gene of interest in the nine major pathways were studied. hsa-mir-34a-5p, a major miRNA that interacted with all the five genes. RELA, FOXO3, PDX1, and SREBF1 were the TFs interacting with the major five gene of interest. Finally, drug-gene interaction network elucidates five potential drugs to treat the genes of interest. This research reveals biomarker genes, miRNA, TFs, and therapeutic drugs in the key signaling pathways, which may help us, understand the processes of all three secondary microvascular problems and aid in disease detection and management.

Identification of Hub Genes in the Pathogenesis of Ischemic Stroke Based on Bioinformatics Analysis

  • Yang, Xitong;Yan, Shanquan;Wang, Pengyu;Wang, Guangming
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권5호
    • /
    • pp.697-709
    • /
    • 2022
  • Objective : The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. Methods : Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. Results : In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including human T-cell lymphotropic virus (HTLV)-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. Conclusion : Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.

빈발 유전자 발현 패턴과 연쇄 규칙을 이용한 유전자 조절 네트워크 구축 (Constructing Gene Regulatory Networks using Frequent Gene Expression Pattern and Chain Rules)

  • 이헌규;류근호;정두영
    • 정보처리학회논문지D
    • /
    • 제14D권1호
    • /
    • pp.9-20
    • /
    • 2007
  • 유전자들의 그룹은 복잡한 상호작용들을 통해 세포의 기능이 조절되며 이러한 상호작용을 하는 유전자 그룹들을 유전자 조절 네트워크 (GRNs: Gene Regulatory Networks)라고 한다. 이전의 유전자 발현 분석 기법인 군집화와 분류는 단지 상동성에 의한 유전자들 사이의 소속을 결정하는 데에는 유용하나 분자 활동에서의 같은 클래스에서 발견되어지는 유전자들 사이의 조절 관계를 식별할 수 없다. 더욱이 유전자들이 어떻게 연관되는 지와 유전자들이 서로 어떻게 조절하는지에 대한 매커니즘의 이해가 필요하다. 따라서 이 논문에서는 시계열 마이크로어레이 데이터로부터의 유전자들의 조절 관계를 발견하기 위해서 빈발 패턴 마이닝과 연쇄 규칙을 이용한 새로운 접근법을 제안하였다. 이 기법에서는 먼저, 빈발 패턴 마이닝 적용을 위한 적절한 데이터 변환 방법을 제안하였고 FP-growth을 이용하여 유전자 발현 패턴들을 발견한다. 그런 다음, 연쇄 규칙을 이용하여 빈발한 유전자 패턴들로부터 유전자 조절 네트워크를 구축하였다. 마지막으로 제안된 기법의 검증은 공개된 유전자들의 조절 관계와 실험 결과의 일치함을 보임으로써 평가하였다.

Gene Co-expression Analysis to Characterize Genes Related to Marbling Trait in Hanwoo (Korean) Cattle

  • Lim, Dajeong;Lee, Seung-Hwan;Kim, Nam-Kuk;Cho, Yong-Min;Chai, Han-Ha;Seong, Hwan-Hoo;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권1호
    • /
    • pp.19-29
    • /
    • 2013
  • Marbling (intramuscular fat) is an important trait that affects meat quality and is a casual factor determining the price of beef in the Korean beef market. It is a complex trait and has many biological pathways related to muscle and fat. There is a need to identify functional modules or genes related to marbling traits and investigate their relationships through a weighted gene co-expression network analysis based on the system level. Therefore, we investigated the co-expression relationships of genes related to the 'marbling score' trait and systemically analyzed the network topology in Hanwoo (Korean cattle). As a result, we determined 3 modules (gene groups) that showed statistically significant results for marbling score. In particular, one module (denoted as red) has a statistically significant result for marbling score (p = 0.008) and intramuscular fat (p = 0.02) and water capacity (p = 0.006). From functional enrichment and relationship analysis of the red module, the pathway hub genes (IL6, CHRNE, RB1, INHBA and NPPA) have a direct interaction relationship and share the biological functions related to fat or muscle, such as adipogenesis or muscle growth. This is the first gene network study with m.logissimus in Hanwoo to observe co-expression patterns in divergent marbling phenotypes. It may provide insights into the functional mechanisms of the marbling trait.

A Study on the Design of a Biologizing Control System

  • Park, Byung-Jae;Wang, Paul P.
    • 한국지능시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.630-634
    • /
    • 2004
  • According to the progress of an information-oriented society, more human friendly systems are required. The systems can be implemented by a kind of intelligent algorithms. In this paper we propose the possibility of the implementation of an intelligent algorithm from gene, behavior of human beings, which has some properties such as self organization and self regulation. The regulation of gene behavior is widely analyzed by Boolean network. Also the SORE (Self Organizable and Regulating Engine) is one of those algorithms. This paper does not report detailed research results; rather, it studies the feasibility of gene behavior in biocontrol systems based upon computer simulations.

Feasibility study of deep learning based radiosensitivity prediction model of National Cancer Institute-60 cell lines using gene expression

  • Kim, Euidam;Chung, Yoonsun
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1439-1448
    • /
    • 2022
  • Background: We investigated the feasibility of in vitro radiosensitivity prediction with gene expression using deep learning. Methods: A microarray gene expression of the National Cancer Institute-60 (NCI-60) panel was acquired from the Gene Expression Omnibus. The clonogenic surviving fractions at an absorbed dose of 2 Gy (SF2) from previous publications were used to measure in vitro radiosensitivity. The radiosensitivity prediction model was based on the convolutional neural network. The 6-fold cross-validation (CV) was applied to train and validate the model. Then, the leave-one-out cross-validation (LOOCV) was applied by using the large-errored samples as a validation set, to determine whether the error was from the high bias of the folded CV. The criteria for correct prediction were defined as an absolute error<0.01 or a relative error<10%. Results: Of the 174 triplicated samples of NCI-60, 171 samples were correctly predicted with the folded CV. Through an additional LOOCV, one more sample was correctly predicted, representing a prediction accuracy of 98.85% (172 out of 174 samples). The average relative error and absolute errors of 172 correctly predicted samples were 1.351±1.875% and 0.00596±0.00638, respectively. Conclusion: We demonstrated the feasibility of a deep learning-based in vitro radiosensitivity prediction using gene expression.

텍스트마이닝과 주경로 분석을 이용한 미발견 공공 지식 추론 - 췌장암 유전자-단백질 유발사슬의 경우 - (Inferring Undiscovered Public Knowledge by Using Text Mining Analysis and Main Path Analysis: The Case of the Gene-Protein 'brings_about' Chains of Pancreatic Cancer)

  • 안혜림;송민;허고은
    • 한국비블리아학회지
    • /
    • 제26권1호
    • /
    • pp.217-231
    • /
    • 2015
  • 본 연구에서는 췌장암의 유전자-단백질 상호작용 네트워크를 구성하고, 관련 연구에서 주요하게 언급되는 유전자-단백질의 유발관계 사슬을 파악함으로써, 췌장암의 원인을 규명하는 실증적인 연구로 이어질 수 있는 미발견 공공 지식을 제공하려 하였다. 이를 위하여 텍스트마이닝과 주경로 분석을 Swanson의 ABC 모델에 적용해 중간 개념인 B를 방향성을 가진 다단계 모델로 확장하고 가장 의미 있는 경로를 도출하였다. 본 연구의 주제가 된 췌장암의 사례처럼 시작점과 끝점조차 한정할 수 없는 미발견 공공 지식 추론에서 주경로 분석은 유용한 도구가 될 수 있을 것이다.

Suppression of UDP-glycosyltransferase-coding Arabidopsis thaliana UGT74E2 Gene Expression Leads to Increased Resistance to Psuedomonas syringae pv. tomato DC3000 Infection

  • Park, Hyo-Jun;Kwon, Chang-Seob;Woo, Joo-Yong;Lee, Gil-Je;Kim, Young-Jin;Paek, Kyung-Hee
    • The Plant Pathology Journal
    • /
    • 제27권2호
    • /
    • pp.170-182
    • /
    • 2011
  • Plants possess multiple resistance mechanisms that protect themselves against pathogen attack. To identify unknown components of the defense machinery in Arabidopsis, gene-expression changes were monitored in Arabidopsis thaliana under 18 different biotic or abiotic conditions using a DNA microarray representing approximately 25% of all Arabidopsis thaliana genes (www.genevestigator.com). Seventeen genes which are early responsive to salicylic acid (SA) treatment as well as pathogen infection were selected and their T-DNA insertion mutants were obtained from SALK institute. To elucidate the role of each gene in defense response, bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 was inoculated onto individual T-DNA insertion mutants. Four mutants exhibited decreased resistance and five mutants displayed significantly enhanced resistance against Pst DC3000-infection as measured by change in symptom development as compared to wild-type plants. Among them, member of uridin diphosphate (UDP)-glycosyltransferase (UGT) was of particular interest, since a UGT mutant (At1g05680) showed enhanced resistance to Pst-infection in Arabidopsis. In systemic acquired resistance (SAR) assay, this mutant showed enhanced activation of SAR. Also, the enhanced SAR correlated with increased expression of defense-related gene, AtPR1. These results emphasize that the glycosylation of UGT74E2 is a part of the SA-mediated disease-resistance mechanism.

Creating Subnetworks from Transcriptomic Data on Central Nervous System Diseases Informed by a Massive Transcriptomic Network

  • Feng, Yaping;Syrkin-Nikolau, Judith A.;Wurtele, Eve S.
    • Interdisciplinary Bio Central
    • /
    • 제5권1호
    • /
    • pp.1.1-1.8
    • /
    • 2013
  • High quality publicly-available transcriptomic data representing relationships in gene expression across a diverse set of biological conditions is used as a context network to explore transcriptomics of the CNS. The context network, 18367Hu-matrix, contains pairwise Pearson correlations for 22,215 human genes across18,637 human tissue samples1. To do this, we compute a network derived from biological samples from CNS cells and tissues, calculate clusters of co-expressed genes from this network, and compare the significance of these to clusters derived from the larger 18367Hu-matrix network. Sorting and visualization uses the publicly available software, MetaOmGraph (http://www.metnetdb.org/MetNet_MetaOm-Graph.htm). This identifies genes that characterize particular disease conditions. Specifically, differences in gene expression within and between two designations of glial cancer, astrocytoma and glioblastoma, are evaluated in the context of the broader network. Such gene groups, which we term outlier-networks, tease out abnormally expressed genes and the samples in which this expression occurs. This approach distinguishes 48 subnetworks of outlier genes associated with astrocytoma and glioblastoma. As a case study, we investigate the relationships among the genes of a small astrocytoma-only subnetwork. This astrocytoma-only subnetwork consists of SVEP1, IGF1, CHRNA3, and SPAG6. All of these genes are highly coexpressed in a single sample of anaplastic astrocytoma tumor (grade III) and a sample of juvenile pilocytic astrocytoma. Three of these genes are also associated with nicotine. This data lead us to formulate a testable hypothesis that this astrocytoma outlier-network provides a link between some gliomas/astrocytomas and nicotine.