• Title/Summary/Keyword: Gene Algorithm

Search Result 232, Processing Time 0.019 seconds

Gene-Gene Interaction Analysis for the Accelerated Failure Time Model Using a Unified Model-Based Multifactor Dimensionality Reduction Method

  • Lee, Seungyeoun;Son, Donghee;Yu, Wenbao;Park, Taesung
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.166-172
    • /
    • 2016
  • Although a large number of genetic variants have been identified to be associated with common diseases through genome-wide association studies, there still exits limitations in explaining the missing heritability. One approach to solving this missing heritability problem is to investigate gene-gene interactions, rather than a single-locus approach. For gene-gene interaction analysis, the multifactor dimensionality reduction (MDR) method has been widely applied, since the constructive induction algorithm of MDR efficiently reduces high-order dimensions into one dimension by classifying multi-level genotypes into high- and low-risk groups. The MDR method has been extended to various phenotypes and has been improved to provide a significance test for gene-gene interactions. In this paper, we propose a simple method, called accelerated failure time (AFT) UM-MDR, in which the idea of a unified model-based MDR is extended to the survival phenotype by incorporating AFT-MDR into the classification step. The proposed AFT UM-MDR method is compared with AFT-MDR through simulation studies, and a short discussion is given.

Simultaneous Optimization of Gene Selection and Tumor Classification Using Intelligent Genetic Algorithm and Support Vector Machine

  • Huang, Hui-Ling;Ho, Shinn-Ying
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.57-62
    • /
    • 2005
  • Microarray gene expression profiling technology is one of the most important research topics in clinical diagnosis of disease. Given thousands of genes, only a small number of them show strong correlation with a certain phenotype. To identify such an optimal subset from thousands of genes is intractable, which plays a crucial role when classify multiple-class genes express models from tumor samples. This paper proposes an efficient classifier design method to simultaneously select the most relevant genes using an intelligent genetic algorithm (IGA) and design an accurate classifier using Support Vector Machine (SVM). IGA with an intelligent crossover operation based on orthogonal experimental design can efficiently solve large-scale parameter optimization problems. Therefore, the parameters of SVM as well as the binary parameters for gene selection are all encoded in a chromosome to achieve simultaneous optimization of gene selection and the associated SVM for accurate tumor classification. The effectiveness of the proposed method IGA/SVM is evaluated using four benchmark datasets. It is shown by computer simulation that IGA/SVM performs better than the existing method in terms of classification accuracy.

  • PDF

A GENETIC ALGORITHM BY USE OF VIRUS EVOLUTIONARY THEORY FOR SCHEDULING PROBLEM

  • Saito, Susumu
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.365-370
    • /
    • 2001
  • The genetic algorithm that simulates the virus evolutionary theory has been developed applying to combinatorial optimization problems. The algorithm in this study uses only one individual and a population of viruses. The individual is attacked, inflected and improved by the viruses. The viruses are composed of flour genes (a pair of top gene and a pair of tail gene). If the individual is improved by the attacking, the inflection occurs. After the infection, the tail genes are mutated. If the same virus attacks several times and fails to inflect, the top genes of the virus are mutated. By this mutation, the individual can be improved effectively. In addition, the influence of the immunologic mechanism on evolution is simulated.

  • PDF

(Pattern Search for Transcription Factor Binding Sites in a Promoter Region using Genetic Algorithm) (유전자 알고리즘을 이용한 프로모터 영역의 전사인자 결합부위 패턴 탐색)

  • 김기봉;공은배
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.487-496
    • /
    • 2003
  • The promoter that plays a very important role in gene expression as a signal part has various binding sites for transcription factors. These binding sites are located on various parts in promoter region and have highly conserved consensus sequence patterns. This paper presents a new method for the consensus pattern search in promoter regions using genetic algorithm, which adopts the assumption of N-occurrence-per-dataset model of MEME algorithm and employs the advantage of Wataru method in determining the pattern length. Our method will be employed by genome researchers who try to predict the promoter region on anonymous DNA sequence and to find out the binding site for a specific transcription factor.

The Sliding Window Gene-Shaving Algorithm for Microarray Data Analysis

  • 이혜선;최대우;전치혁
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2002.06a
    • /
    • pp.139-152
    • /
    • 2002
  • Gene-shaving(Hastie et al, 2000) is a very useful method to identify a meaningful group of genes when the variation of expression is large. By shaving off the low-correlated genes with the leading principal component, the primary genes with the coherent expression pattern can be identified. Gene-shaving method works well If expression levels are varied enough, but it may not catch the meaningful cluster in low expression level or different expression time even with coherent patterns. The sliding window gene-shaving method which is to apply gene-shaving in each sliding window after hierarchical clustering is to compensate losing a meaningful set of genes whose variation is not large but distinct. The performance to identify expression patterns is compared for the simulated profile data by the different variance and expression level.

  • PDF

Consensus Clustering for Time Course Gene Expression Microarray Data

  • Kim, Seo-Young;Bae, Jong-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.335-348
    • /
    • 2005
  • The rapid development of microarray technologies enabled the monitoring of expression levels of thousands of genes simultaneously. Recently, the time course gene expression data are often measured to study dynamic biological systems and gene regulatory networks. For the data, biologists are attempting to group genes based on the temporal pattern of their expression levels. We apply the consensus clustering algorithm to a time course gene expression data in order to infer statistically meaningful information from the measurements. We evaluate each of consensus clustering and existing clustering methods with various validation measures. In this paper, we consider hierarchical clustering and Diana of existing methods, and consensus clustering with hierarchical clustering, Diana and mixed hierachical and Diana methods and evaluate their performances on a real micro array data set and two simulated data sets.

Power and major gene-gene identification of dummy multifactor dimensionality reduction algorithm (더미 다중인자 차원축소법에 의한 검증력과 주요 유전자 규명)

  • Yeo, Jungsou;La, Boomi;Lee, Ho-Guen;Lee, Seong-Won;Lee, Jea-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.277-287
    • /
    • 2013
  • It is important to detect the gene-gene interaction in GWAS (genome-wide association study). There have been many studies on detecting gene-gene interaction. The one is D-MDR (dummy multifoactor dimensionality reduction) method. The goal of this study is to evaluate the power of D-MDR for identifying gene-gene interaction by simulation. Also we applied the method on the identify interaction effects of single nucleotide polymorphisms (SNPs) responsible for economic traits in a Korean cattle population (real data).

Multiple Sequence Aligmnent Genetic Algorithm (진화 알고리즘을 사용한 복수 염기서열 정렬)

  • Kim, Jin;Song, Min-Dong;Choi, Hong-Sik;Chang, Yeon-Ah
    • Korean Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.115-120
    • /
    • 1999
  • Multiple Sequence Alignment of DNA and protem sequences is a imnport'mt tool in the study of molecular evolution, gene regulation. and prolein suucture-function relationships. Progressive pairwise alignment method generates multiple sequence alignment fast but not necessarily with optimal costs. Dynamic programming generates multiple sequence alig~~menl with optimal costs in most cases but long execution time. In this paper. we suggest genetlc algorithm lo improve the multiple sequence alignment generated from the cnlent methods, describe the design of the genetic algorithm, and compare the multiple sequence alignments from 0111 method and current methods.

  • PDF

A Comparison Study on SVM MDR and D-MDR for Detecting Gene-Gene Interaction in Continuous Data (연속형자료의 유전자 상호작용 규명을 위한 SVM MDR과 D-MDR의 방법 비교)

  • Lee, Jong-Hyeong;Lee, Jea-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.413-422
    • /
    • 2011
  • We have used a multifactor dimensionality reduction(MDR) method to study the major gene interaction effect in general; however, without application of the MDR method in continuous data. In light of this, many methods have been suggested such as Expanded MDR, Dummy MDR and SVM MDR. In this paper, we compare the two methods of SVM MDR and D-MDR. In addition, we identify the gene-gene interaction effect of single nucleotide polymorphisms(SNPs) associated with economic traits in Hanwoo(Korean cattle). Lastly, we discuss a new method in consideration of the advantages that the other methods present.

Constructing Gene Regulatory Networks using Frequent Gene Expression Pattern and Chain Rules (빈발 유전자 발현 패턴과 연쇄 규칙을 이용한 유전자 조절 네트워크 구축)

  • Lee, Heon-Gyu;Ryu, Keun-Ho;Joung, Doo-Young
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.9-20
    • /
    • 2007
  • Groups of genes control the functioning of a cell by complex interactions. Such interactions of gene groups are tailed Gene Regulatory Networks(GRNs). Two previous data mining approaches, clustering and classification, have been used to analyze gene expression data. Though these mining tools are useful for determining membership of genes by homology, they don't identify the regulatory relationships among genes found in the same class of molecular actions. Furthermore, we need to understand the mechanism of how genes relate and how they regulate one another. In order to detect regulatory relationships among genes from time-series Microarray data, we propose a novel approach using frequent pattern mining and chain rules. In this approach, we propose a method for transforming gene expression data to make suitable for frequent pattern mining, and gene expression patterns we detected by applying the FP-growth algorithm. Next, we construct a gene regulatory network from frequent gene patterns using chain rules. Finally, we validate our proposed method through our experimental results, which are consistent with published results.