• Title/Summary/Keyword: Gelatinase A

Search Result 86, Processing Time 0.059 seconds

Gelatinase, a Possible Etiologic Factor of Photoaging, is Present in Healthy Human Facial Skin and is Inhibited by Turmeric Extract

  • Takada, Keiko;Amano, Satoshi;Matsunaga, Yukiko;Kohno, Yoshiyuki;Inomata, Shinji
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.387-412
    • /
    • 2003
  • Influence of gelatinase on basement membrane (BM) structure was investigated by using a skin equivalent (SE) model. The results showed that (1) gelatinase produced by cells degraded the BM and (2) the addition of matrix metalloproteinase-specific inhibitor to the SE medium accelerated the formation of BM structure, indicating that gelatinase is involved in BM impairment. The activity of gelatinase was also studied in healthy human facial skin tissues. The result of in situ zymography revealed gelatinase activity around the basal layer of the epidermis, where BM integrity was severely compromised. Therefore, this enzyme was suggested to be associated with BM decomposition in human facial skin. To assess the behavior of gelatinase in stratum corneum (SC) non-invasively, an immunological study was performed. Since positive immunostaining of pro-gelatinase B was observed in SC stripped from sun-exposed skin, whereas no positive staining detected in SC of non-irradiated skin, gelatinase in the epidermis could be non-invasively detected by measuring gelatinase in SC. Gelatinase in SC of healthy female volunteers was monitored using a special film that sensitively and conveniently detects gelatinase. Ninetr percent of SC from facial skin (l00 women, 40's-50's) was gelatinase-positive. On the other hand, SC from non-irradiated skin was negative. These results strongly suggest that (1) gelatinase is constantly produced in the facial epidermis of most middle-aged woman during their daily life, and (2) the enzyme might be involved in the aging-related degeneration of both BM and the matrix fibers of the upper layer of the dermis, acting as a very important aging factor. Strong inhibitory activity against gelatinase was found in turmeric extract and identified curcumin as the major ingredient. Topical application of cream containing turmeric extract significantly decreased the number of gelatinase-positive SC clusters in human facial skins. These results indicated that turmeric is an effective ingredient to prevent skin from photo aging by suppressing chlonically upregulated gelatinase activity by UV and to improve skin condition.

  • PDF

A Gelatinase A Isoform, GA110, of Human Follicular Fluid Is Degraded by the Bovine Oviductal Fluid Component (소의 수란관액에 의한 사람 난포액의 Gelatinase A 동위효소인 GA110의 분해)

  • Kim, Min-Jung;Kim, Ji-Young;Leec, Seung-Jae;Yoon, Yong-Dal;Cho, Dong-Jae;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.5 no.1
    • /
    • pp.23-33
    • /
    • 2001
  • When mammalian oocytes ovulate into the oviduct, associating follicular fluid components are exposed to the oviductal environment, possibly resulting in the mutual interaction between fillicu1ar and oviductal fluids. In the Present study, we have demonstrated for the first time that components of fallicular fluid could be modified by the oviductal fluid. Gelatin zymographic analyses of human follicular fluid (hFF) obtained from IVF patients showed consistently the presence of 110 kDa gelatinase (GA110) in addition to many bands among which 62 kDa gelatinase was predominant. Addition of EDTA or phenanfhroline to the gelatinase substrate buffer during gel incubation abolished GA110 band whereas phenylmethylsulffnyl fluoride (PMSF) did not. In contrast, bovine oviductal fluid(bOF) exhibited only 62 kDa gelatinase. Surprisingly, when bOF was added to hFF in 1:1 ratio and then the mixture was incubated for 3 h at 37$^{\circ}$C, GA110 of hFF disappeared. Disappearance of GA110 by bOF was observed even within 30 min after mixing with hFF. Addition of aminophenylmercuric acetate (APMA) to hFF also abolished enzymatic activity of GA110 but increased the activityof 62 kDa gelatinase. However, APMA abolished many other gelatinases as well unlike bOF. Interestingly, treatment of hFF with EDTA for 3 h remarkably increased the enzymatic activity of GA110 but not that of other gelatinases. Addition of phenanthroline, PMSF or soybean trypsin inhibitor (SBTI) did not affect overall gelatinase activities. Again, addition of bOF to the hFF pretreated with any of the above proteinase inhibitors abolished the appearance of GA110. Human serum also showed GAI 10 of which activity was greatlyenhanced by EDTA treatment. Similar to hFF, serum GA110 also disappeared by the addition of bOF. Human granulosa cell homogenate did not reveal any appreciable gelatinase activity except 92 kDa gelatinase. Anti-human gelatinase A antibody reacted with 62 kDa gelatinase of hFF. Based upon these results, it is concluded that bOF could selectively degrade an isoform of gelatinase A present in hFF and human serum.

  • PDF

Predictive Role of Neutrophil Gelatinase-Associated Lipocalin in Early Diagnosis of Platin-Induced Renal Injury

  • Seker, Mehmet Metin;Deveci, Koksal;Seker, Ayse;Sancakdar, Enver;Yilmaz, Ali;Turesin, A. Kerim;Kacan, Turgut;Babacan, Nalan A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.407-410
    • /
    • 2015
  • Background: Acute kidney injury is an important issue in chemotherapy receiving patients an neutrophil gelatinase-associated lipocalin has been proposed as a novel marker. We here aimed to assess the role of urinary levels for assessment after platin exposure. Materials and Methods: Patients who had treated with cisplatin or carboplatin or oxaliplatin containg regimens were included in this study. Baseline and postchemotherapy serum urea, creatinine, urine neutrophil gelatinase-associated lipocalin and urine creatinine levels were determined. To avoid the effects of hydration during chemotherapy infusion the urinary neutrophil gelatinase-associated lipocalin/urine creatinine ratio was used to determine acute kidney injury. Results: Of a total of 42 patients receiving platin compounds,14 (33.3%) received cisplatin containing regimens, 14 (33.3%) received carboplatin and 14 (33.3%) oxaliplatin. The median age was 60 (37-76) years. Nineteen of the patients (45.2%) had lung cancer, 12 (28.6%) colorectal cancer and 11 (26.2%) others. The median pre and post chemotherapy urine neutrophil gelatinase-associated lipocalin/urine creatinin ratio was 15.6 ng/mg and 35.8 ng/mg (p=0.041) in the cisplatin group, 32.5 ng/mg and 86.3 ng/mg (p=0.004) in the carboplatin group and 40.9 ng/mg and 62.3 ng/mg (p=0.243) in the oxaliplatin group. Conclusions: Nephrotoxicity is a serious side effect of chemotherapeutic agentslike cisplatin and carbopaltin, but only to a lower extent oxaliplatin. All platin compounds must be used carefully and urine neutrophil gelatinase-associated lipocalin measurement seems to be promising in detecting acute kidney injury earlier than with creatinine.

PDI-like Enzyme in Human Follicular Fluid Converts 72 kDa Gelatinase into GA110 (사람 난포액에 존재하는 72 kDa Geletinase로부터 GA110을 만드는 PDI-like PDI-like Enzyme)

  • Kim Jisoo;Kim Haekwon
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.105-112
    • /
    • 2003
  • Previously, we discovered a new MMP-2 isoform GA110, of which appearance in human follicular fluid(FF) and serum was increased by EDTA. The present study was conducted to investigate how GAI 10 can appear by EDTA. To examine possible involvement of protein disulfide isomerase(PDI), an enzyme responsible for the dimerization of protein via disulfide formation, effect of PDI inhibitor on the appearance of GA110 by EDTA was investigated. When PDI inhibitor added to FF before EDTA treatment, the gelatinolytic activity of GA110 was abolished in a concentration dependent manner. By contrast, the activity of 72 kDa gelatinase increased. However, the PDI inhibitor added to FF after EDTA treatment, the gelatinolytic activity of GA110 was unaffected. To find out the nature of the enzyme which converts 72 kDa gelatinase into GAI 10, chromatographic separation method of FF proteins was done. Using hydroxyapatite column, fractions rich in 72 kDa gelatinase were isolated and pooled. By using this pool as substrate for the 72 kDa converting enzyme, protein fractions containing the converting activity were obtained from chromatographic separation of FF onto glutathione sepharose fast flow column. When immunoblotting was performed on this enzymatically active protein fractions against polyclonal anti-PDI antibody, distinct immunoreactivity was observed, although appeared in smaller molecular weight region. Based on these observations, it is suggested that the appearance of GAI 10 in FF by EDTA treatment could be due to an activation of PDI-like enzyme, which dimerizes 72 kDa gelatinase into GAI 10 via the formation of disulfide bond between molecules.

  • PDF

Gelatinases of Extracellular Matrix of Human Oocyte-Cumulus Complex (사람 난자-난구 복합체 ECM의 Gelatinase)

  • 이인선;나경아;김해권
    • Development and Reproduction
    • /
    • v.5 no.2
    • /
    • pp.123-129
    • /
    • 2001
  • When mammalian oocytes undergo maturation, cumulus cells surrounding the oocyte exhibit remodeling of their structure known as cumulus expansion. Many molecules including hyaluronic acid participate in this remodeling. The present study aimed to investigate a possible existence of matrix metalloproteinases(MMPs) in the extracellular matrix(ECM) of human oocyte-cumulus complex. ECM was extracted from the human oocyte-cumulus complex. Gelatin gel zymogram of ECM exhibited 7 gelatinases having molecular weight of 300kDa, 240kDa, 200kDa, 180kDa, 116kDa, 97kDa, and 84kDa. This gelatinase profile was very different from that of ovarian mural granulosa cell extract or white blood cell extract, indicating that the oocyte-cumulus complex donating ECM was free from other than cumulus cells. When ethylenediaminetetraacetic acid or 1', 10'-phenanthroline was added to the reaction buffer during zymographic development, almost gelatinase activities were abolished, suggesting that they were MMPs. Following incubation of ECM in the presence of aminophenylmercuric acetate, an activator of proMMPs, 4 gelatinases of 240kDa, 180kDa, 97kDa, and 84kDa disappeared with the concomitant appearance of 80kDa, 65kDa, and 60kDa gelatinases. Based upon these observation, it is suggested that ECM of the human oocyte-cumulus complex consists of gelatinases, presumed to be MMP-2 and MMP-9 isoforms.

  • PDF

Effects of Interleukin-1${\beta}$ and Tumor Necrosis $Factor-{\alpha}$ on the Release of Collagenase and Gelatinase from Osteoblasts

  • Eun, Jong-Gab;Baek, Dong-Heon;Kim, Se-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.5
    • /
    • pp.269-274
    • /
    • 2002
  • A large number of factors such as osteotropic hormones, cytokines, or growth factors are related to the bone remodeling which is characterized by the coupling of osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Recent investigations have indicated that cytokines such as $interleukin-1{\beta}\;(IL-1{\beta})$ and tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ play a potential role in the bone resorption associated with a variety of pathological conditions such as inflammatory osteolytic disease. Collagen is the most abundant protein of the extracellular matrix of bone, and the participation of collagenase in bone resorption has been widely investigated. In this study, effects of $IL-1{\beta}$ and $TNF-{\alpha}$ on the release of collagenase from osteoblastic cells were measured. The gelatinase activity was also measured by gel substrate analysis (zymography) after electrophoresis of conditioned media of osteoblastic cell culture. $IL-1{\beta}$ increased the collagenase activity in ROS17/2.8 and HOS cell culture. $TNF-{\alpha}$ also increased the collagenase activity of osteoblastic cells. When two kinds of cytokines were treated simultaneously in the culture of osteoblastic cells, synergistic increase of collagenase activity was seen in ROS17/2.8 cells. $IL-1{\beta}$ and $TNF-{\alpha}$ significantly increased the collagenase activity after 6 hour treatment in the osteoblastic cell culture, and there was no additional increase according to the culture period. Osteoblastic cells released the gelatinase and molecular weight of this enzyme was measured about 70 KDa as assessed by zymogram. $IL-1{\beta}$ and $TNF-{\alpha}$ showed increase of the gelatinase activity produced by ROS17/2.8 and HOS cells. Taken together, this study suggested that $IL-1{\beta}$ and $TNF-{\alpha}$ can modulate bone metabolism, at least in part, by increased release of collagenase and gelatinase from osteoblasts.

Pyridoxatin, an Inhibitor of Gelatinase A with Cytotoxic Activity

  • Lee, Ho-Jae;Chung, Myung-Chul;Lee, Choong-Hwan;Chun, Hyo-Kon;Kim, Hwan-Mook;Kho, Yung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.445-450
    • /
    • 1996
  • Gelatinase A is a member of the matrix metalloproteinases that play an important role in cancer invasion and metastasis. In the course of screening gelatinase A inhibitors from microbial sources, a fungal strain PT-262 showed a strong inhibitory activity. The strain was identified as Chaunopycnis alba on the basis of its morphological characteristics. The inhibitor was isolated from acetone extract of mycelial cake by sequential chromatographies on MCI-gel, Sephadex LH-20, and a reverse-phase HPLC column. The purified inhibitor was identified as pyridoxatin by its physico-chemical properties and spectroscopic analysis. Pyridoxatin is not a peptide analog and has cyclic hydroxamic acid moiety. It inhibited activated gelatinase A with an $IC_{50}$ value of 15.2 ${\mu}M$ using fluorescent synthetic peptide. It also had a strong cytotoxicity against human cancer cell lines in vitro. Furthermore, this compound inhibited DNA synthesis with an $IC_{50}$ value of 2.92 ${\mu}M$ in PC-3 prostate cancer cells by [$^3H$]thymidine incorporation assay.

  • PDF

Optimization of Medium Components for the Production of Antagonistic Lytic Enzymes Against Phytopathogenic Fungi and Their Biocontrol Potential

  • Lee, Yong Seong;Neung, Saophuong;Park, Yun Suk;Kim, Kil Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.299-305
    • /
    • 2014
  • In this paper, fractional factorial screening design (FFSD) and central composition design (CCD) were used to optimize the medium components for producing chitinase and gelatinase by Lysobacter capsici YS1215. Crab shell powder, nutrient broth and gelatin were proved to have significant effects on chitinase and gelatinase activity by FFSD first. An optimal medium was obtained by using a three factor CCD, which consisted of nutrient broth of $2.0gL^{-1}$, crab shell powder of $2.0gL^{-1}$ and gelatin of $1.0gL^{-1}$, respectively with the highest chitinase activity ($3.34UmL^{-1}$) and gelatinase activity ($14.15UmL^{-1}$). This value was 3.76 and 1.11 fold of the chitinase and gelatinase activity, respectively, compared to the lowest productive medium in the design matrix. In investigating potential of these enzymes partially purified from L. capsici YS1215 for biotechnological use, the crude enzymes was found to be inhibition against pathogenic fungal mycelia: Colletotrichum gleosporioides, Phytophthora capsici, and Rhizoctonia solani. In this study, we demonstrated the optimal medium for producing the chitinolytic and gelatinolytic enzymes by the strain YS1215 and the role of their enzymes that may be useful for further development of a biotechnological use and agricultural use for biological control of phytopathogenic fungi.

Inhibitory Effect of Siderophore Purified from Burkholderia sp. CAS-5 on the Matrix Metalloproteinase-2 (Gelatinase A) (Burkholderia sp. CAS-5 균으로 부터 생산된 시드로포어의 Matrix metalloproteinase-2(Gelatinase A) 억제 활성)

  • Kim, Kyoung-Ja
    • YAKHAK HOEJI
    • /
    • v.50 no.4
    • /
    • pp.228-233
    • /
    • 2006
  • Matrix metalloproteinase-2 is known to be involved in pathological processes such as tumor invasion or rheumatoid arthritis. A soil microorganism producing siderophore under low iron stress $(up\;to\;5\;{\mu}m\;of\;iron)$ was identified as Burkholderia sp. Hydroxamate type siderophore produced by Burkholderia sp. CAS-5 was partially purified. MMP inhibitory activity of siderophore was confirmed by gelatin zymography. The $Zn^{2+}-chelating$ activity of siderophore correlated with the inhibition of MMP-2 activity.

Effect of Endothelin-1 on the Proliferation and Activity of HOS Cells (Endothelin-1이 HOS 세포의 증식과 활성에 미치는 영향)

  • Bae, Moon-Seo;Ko, Seon-Yle;Kim, Jung-Keun;Kim, Se-Won
    • Journal of Oral Medicine and Pain
    • /
    • v.26 no.4
    • /
    • pp.319-329
    • /
    • 2001
  • Endothelin-1 (ET-1) is a recently discovered potent vasoconstrictive peptide. It was first identified in vascular endothelial cells. ET-1 is a 21-amino acid peptide and elicits systemic effects such as stimulation of the production of atrial natriuretic peptide and release of aldosterone and corticosterone. In this study, to examine the role of ET-1 in the bone metabolism, effect of ET-1 on the proliferation and activity of osteoblastic cells was studied using HOS cells as osteoblast model. ET-1 dose-dependently increased the cell proliferation as determined by cell counting and MTT reduction assay after 48hr treatment. Alkaline phosphatase activity was inhibited by ET-1 and showed significant inhibition by 50 and 100 nM ET-1. ET-1 increased NBT reduction by HOS cells dose-dependently showing that ET-1 may increase the superoxide production by osteoblasts. Nitrite concentration in the media of HOS cell culture without cytokine stimulation was negligible and unaffected by ET-1 after 48hr treatment. Finally, after collection and concentration of conditioned media, gelatinase activity produced by HOS cells was determined by zymography. HOS cells can produce and secrete the gelatinase (gelatinase A type as determined by molecular weight of about 65,000) into culture media, however, ET-1 had no effect on the gelatinase activity. These findings suggest that ET-1 may have diverse effects on the proliferation and differentiation of osteoblasts, therefore, it may play an important role in bone metabolism.

  • PDF