• Title/Summary/Keyword: Gelatin (Gel)

Search Result 114, Processing Time 0.024 seconds

Effect of Freezing Conditions on the Formation of Ice Crystals in Food during Freezing Process (식품의 동결중에 생성되는 빙결정에 미치는 동결조건의 영향)

  • 공재열;김정한;김민용;배승권
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.2
    • /
    • pp.213-218
    • /
    • 1992
  • The reaching time to the freezing point was to be fast in the order of 2% agar gel, 5% agar gel, 20% gelatin gel, pork, respectively. The freezing time and the passing time through the zone of the maximum ice crystal formation had linear relationship with the coolant temperature. The average diameter d$_{p}$ of ice crystal in a soybean protein gel and the moving of freezing front were represented an inverse proportion, and the moving velocity of freezing front was shown as 3.4$\times$10$^{-6}$ $\textrm{cm}^2$/sec from predicted theoretical formula. This value was very close to experimental results. The storage temperature did not give any influences for the growth of ice crystal in inside soybean protein gels during freezing conservation. The relationship between freezing condition and structure of freezing front was as follows : (moving velocity of freezing front) : (mass transfer rate of water at freezing point)$\times$(surface area of freezing front).

  • PDF

Isolation and characterization of a protease deficient mutant of Aspergillus niger

  • Jeong, Hye-Jong;Lee, Mi-Ae;Park, Seung-Mun;Kim, Dae-Hyeok
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.89-92
    • /
    • 2001
  • Aspergillus niger has been used as a host system to express many heterologous proteins. It has various advantages over other expression systems in that it is a small eukaryotic GRAS (Generally Recognized aS Safe) organism with a capacity of secreting large amount of foreign proteins. However, it has been known that the presence of an abundant protease is a limiting factor to express a heterologous protein. The proteases deficient mutants of A. niger were obtained using UV -mutagenesis. A total of 1 ${\times}$ $10^5$ spores were irradiated with 10-20% survival dose of UV, 600J/M2 at 280nm, and the resulting spores were screened on the casein -gelatin plates. Ten putative protease deficient mutants were further analyzed on the starch plates to differentiate the pro from the secretory mutant. An endogenous extracellular enzyme, glucose oxidase, was also examined to confirm that the mutant phenotype was due to the proteases deficiency rather than the mutation in the secretory pathway. The reduced proteolytic activity was measured using SDS-fibrin zymography gel, casein degradation assay, and bio-activity of a supplemented hGM -CSF (human Granulocyte-Macrophage Colony Stimulating Factor). Comparing with the wild type strain, less than 30 % of proteolytic activity was observed in the culture filtrate of the protease deficient mutant (pro -20) without any notable changes in cell growth and secretion.

  • PDF

Purification and Properties of a Collagenolytic Protease Produced by Marine Bacterium Vibrio vulnificus CYK279H

  • Kang, Sung-Il;Jang, Young-Boo;Choi, Yeung-Joon;Kong, Jai-Yul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.593-598
    • /
    • 2005
  • A collagenolytic enzyme, produced by Vibrio vulnificus CYK279H, was purified by ultrafiltration, dialysis, Q-Sepharose ion exchange and Superdex-200 gel chromatography. The enzyme from the supernatant was purified 13.2 fold, with a yield of 11.4%. The molecular weight of the purified enzyme was estimated by SDS-PAGE to be approximately 35.0kDa. The N-terminal sequence of the enzyme was determined as Gly-Asp-Pro-Cys-Met-Pro-Ile-Ile-Ser-Asn. The optimum temperature and pH for the enzyme activity were $35^{\circ}C$ and 7.5, respectively. The enzyme activity was stable within the pH and temperature ranges 6.8-8.0 and $20{\sim}35^{\circ}C$, respectively. The purified enzyme was strongly activated by $Zn^{2+},\;Li^{2+},\;and\;Ca^{2+}$, but inhibited by $Cu^{2+}$. In addition, the enzyme was strongly inhibited by 1, 10-phenanthroline and EDTA. The purified enzyme was suggested to be a neutral metalloprotease.

Characterization of a Collagenase-1 Inhibitory Peptide Purified from Skate Dipturus chilensis Skin (홍어류(Dipturus chilensis) 껍질로부터 분리 정제된 collagenase-1 저해 펩타이드의 특성)

  • Park, Sung-Ha;Lee, Jung-Kwon;Jeon, Joong-Kyun;Byun, Hee-Guk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.5
    • /
    • pp.456-463
    • /
    • 2011
  • We attempted to isolate a collagenase-1 inhibitory peptide from skate Dipturus chilensis skin protein. The protein from skate skin was digested by various enzymes (alcalase, ${\alpha}$-chymotrypsin, neutrase, papain, pepsin, and trypsin) to produce a collagenase-1 inhibitory peptide. The collagenase-1 inhibitory activity of the peptides obtained was measured by gelatin digestion assay. Among the six hydrolysates, pepsin hydrolysate exhibited the highest collagenase-1 inhibitory activity. The peptide showing strong collagenase-1 inhibitory activity was purified by Sephadex G-25 gel chromatography and HPLC using an octadecylsilyls (ODS) column. The amino acid sequence of purified collagenase-1 inhibitory peptide was identified to be Asn-Leu-Asp-Val -Leu-Glu-Val-Phe (961 Da) by quadrupole time of flight (Q-TOF) and electrospray ionization mass spectrometry (ESI-MS) mass spectroscopy. The $IC_{50}$ value of purified peptide was 87.0 ${\mu}M$. Moreover, the peptide did not exhibit cytotoxic effects on human dermal fibroblast cell lines.

Preliminary Investigations of the Dosimetric Properties of a Normoxic Polymethacrylic Acid Gel Dosimeter Using a Respiration-Motion Simulator (호흡모의움직임장치를 이용한 정상산소 폴리메타크릴산 겔 선량계의 선량특성)

  • Park, Chae Hee;Cho, Yu Ra;Cho, Kwang Hwan;Park, Ji Ae;Kim, Kyeong Min;Kim, Kum Bae;Jung, Hai Jo;Ji, Young Hoon;Kwon, Soo-Il
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.138-144
    • /
    • 2012
  • Dose distribution throughout the clinical organ range of motion was analyzed using a respiratory-motion simulator that was equipped with a polymer gel dosimeter and EBT2 film. The normoxic polymer gel dosimeter was synthesized from gelatin, MAA, HQ, THPC and HPLC. The gel dosimeter and EBT2 film were irradiated with Co-60 gamma rays that were moved along the x-axis and y-axis in ${\pm}1.5cm$ steps at five-second intervals. The field size was $5{\times}5cm^2$. The SSD was 80 cm and set to 10 Gy at a depth of 2 cm. The PDD at a depth of 50 mm was 75.2% in the ion chamber, 82.3% in the static state and 86.1% in the dynamic state in the gel dosimeter. The penumbra for the dynamic state target, which was measured using the gel dosimeter, averaged 10.89 mm, this is a 40.5% increase over the penumbra of the static state target of 7.74 mm. In addition, when measuring with gel dosimetry, the value for the penumbra is 36.6% smaller in the static state and 29.4% smaller in the dynamic state compared to measuring with film. The aim of this study was to investigate the dosimetric properties of a normoxic polymethacrylic acid gel dosimeter in static and dynamic states and to evaluate the potentiality as a relative dosimeter for dynamic therapeutic radiation.

Characterization and Production of Thermostable and Acid-stable Extracellular Fibrinolytic Enzymes from Cordyceps militaris

  • Kim, Seon-Ah;Son, Hong-Joo;Kim, Keun-Ki;Park, Hyun-Chul;Lee, Sang-Mong;Cho, Byung-Wook;Kim, Yong-Gyun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.22 no.2
    • /
    • pp.83-93
    • /
    • 2011
  • Biochemical and enzymatic characterization for extracellular protease isolated from Cordyceps militaris cultivated on rice bran medium was investigated. C militaris produced proteolytic enzymes from 10 days after inoculation, maximum enzyme production was found at 25 days. The optimum temperature and pH of proteases production was at $25^{\circ}C$ and pH 7.0, respectively. The protease activity was observed in the four peaks (Pro-I, Pro-II, Pro-III, and Pro-IV) separated through Sephadex G-100 column chromatography. The separated protease was optimally active at $25^{\circ}C$. Optimum pH of the protease was between 7 and 8. Enzyme was also stable over at $30-80^{\circ}C$. The enzyme was highly stable in a pH range of 4-9. Protease activity was found to be slightly decreased by the addition of $Mg^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Fe^{2+}$ and $Cu^{2+}$, whereas inhibited by the addition of $Ca^{2+}$ and $Co^{2+}$ Protease activity was inhibited by protease inhibitor PMSF. On the other hand, the partially purified protease was investigated on proteolytic protease activity by zymogram gel electrophoresis using three substances (casein, gelatin and fibrin). Four active bands (F-I, FII, F-III, and F-IV) of fibrin degradation were revealed on fibrin zymogram gels. Both of F-II and FIII showed caseinolytic, fibrinolytic and gelatinolytic activities in three gels. Thermostability, pH stability, and pH-thermostability of the enzyme determined the residual fibrinolytic activity also displayed on fibrin zymogram gel. The only one enzyme (F-II) displayed over a broad range of temperature at $30-90^{\circ}C$. The FII displayed fibrinolytic activity in the pH range 3-5, but was inactivated in the range of pH 6-11. The F-I and F-III showed enzyme activity in the pH range of 6-11. In the pH-thermostability, the F-II only kept fibrinolytic activity after heating at $100^{\circ}C$ for 10, 20 and 30 min at pH 3 and pH 7, respectively. On the other hand, the F-II was retained activity until heating for 10 min under pH 11 condition. By using fibrin zymogram gel electrophoresis, extracellular fibrinolytic enzyme F-II from C. militaris showed unusual thermostable under acid and neutral conditions.

Application of Rice Polishing By-products to Processed Rice Food (II) - Processing Aptitude of Rice Embryo - (쌀 가공식품 제조용 소재로서의 도정 부산물 활용 방안 (II) - 쌀 배아의 떡 고물 및 소로서의 가공적성 검정 -)

  • Cho, Min-Kyung;Kim, Mi-Hyun;Kang, Mi-Young
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.3
    • /
    • pp.331-336
    • /
    • 2008
  • We investigated the processing aptitude of rice embryo powder as covering and stuffing in rice cake. The quality characteristics of gelatin jelly with rice embryo powder as a stuffing was also examined. Covering steamed rice cake with 50% rice embryo led to less crumbling compared to that of 100% rice embryo powder. Jelly with rice embryo powder was not significantly different with control group in appearance(p>0.05). Covering steamed rice cake with 50% rice embryo powder was not significantly different compared to 100% soybean in color, flavor, taste, toughness, and overall acceptability(p>0.05). Furthermore, there was no significant difference between sesame and rice embryo stuffing in sensory evaluation(p>0.05). When 5% rice embryo powder was added to gelatin jelly, hardness, springiness, and gumminess was not different to that of control(p>0.05), while chewiness did increase(p<0.05). Jelly added with 5% rice embryo had the highest taste acceptability.

  • PDF

A Study of Optimized MRI Parameters for Polymer Gel Dosimetry (중합체 겔 선량측정법을 위한 최적의 자기공명영상 변수에 관한 연구)

  • Cho, Sam-Ju;Chung, Young-Lip;Lee, Sang-Hoon;Huh, Hyun-Do;Choi, Jin-Ho;Park, Sung-Ill;Shim, Su-Jung;Kwon, Soo-Il
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.71-80
    • /
    • 2012
  • In order to verify exact dose distributions in the state-of-the-art radiation techniques, a newly designed three-dimensional dosimeter and technique has been took strongly into consideration. The main purpose of our study is to verify the optimized parameters of polymer gel as a real volumetric dosimeter in terms of the various study of MRI. We prepared a gel dosimeter by combing 8% of gelatin, 8% of MAA, and 10 mM of THPC. We used a Co-60 gamma-ray teletherapy unit and delivered doses of 0, 2, 4, 6, 8, 10, 12, and 14 Gy to each polymer gel with a solid phantom. We used a fast spin-echo pulse to acquire the characterized T2 time of MRI. The signal noise ratio (SNR) of the head & neck coil was a relatively lower sensitivity than the body coil; therefore the dose uncertainty of head & neck coil would be lower than body coil's. But the dose uncertainty and resolution of the head & neck coil were superior to the body coil in this study. The TR time between 1,500 ms and 2,000 ms showed no significant difference in the dose resolution, but TR of 1,500 ms showed less dose uncertainty. For the slice thickness of 2.5 mm, less dose uncertainty of TE times was at 4 Gy, as well, it was the lowest result over 4 Gy at TE of 12 ms. The dose uncertainty was not critical up to 6 Gy, but the best dose resolution was obtained at 20 ms up to 8 Gy. The dose resolution shows the lowest value was over 20 ms and was an excellent result in the number of excitation (NEX) of three. The NEX of two was the highest dose resolution. We concluded that the better result of slice thickness versus NEX was related to the NEX increment and thin slice thickness.

Characterization of Aspergillus niger Mutants Deficient of a Protease

  • Chung, Hea-Jong;Park, Seung-Moon;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • v.30 no.3
    • /
    • pp.160-165
    • /
    • 2002
  • Aspergillus niger has been used as a host to express many heterologous proteins. It has been known that the presence of an- abundant protease is a limiting factor to express a heterologous protein. The protease deficient mutant of A. niger was obtained using UV-irradiation. A total of $1{\times}10^5$ spores were irradiated with $10{\sim}20%$ survival dose of UV, 600 $J/m^2$ at 280 nm, and the resulting spores were screened on the casein-gelatin plates. Ten putative protease deficient mutants showing the reduced halo area around colonies were further analyzed to differentiate the protease deficient mutant from other mutant types. Among ten putative mutants, seven mutants showed significant growth defect on nutrient rich medium and two mutants appeared to be the secretory mutants, which resulted in the impaired secretion of extracellular proteins including proteases. A mutant $pro^--20$ showed reduced halo zone without any notable changes in growth rate. In addition, the starchdegrading and glucose oxidase activities in the culture filtrate of $pro^--20$ mutant showed the similar range as that of the parental strain, which suggested that the $pro^--20$ mutant ought to be the protease deficient mutant rather than a secretory mutant. The reduced proteolytic activity of the $pro^--20$ was demonstrated using SDS-fibrin zymography gel. The reduced extracellular proteolysis was quantified by casein degradation assay and, comparing with the parental strain, less than 30% residual extracellular protease activity was detected in the culture filtrate of the $pro^--20$ mutant. The bio-activity of an exogenously supplemented hGM-CSF(human Granulocyte-Macrophage Colony Stimulating Factor) in the culture filtrate of $pro^--20$ mutant was detected until eight times more diluted preparations than that of the parental strain.

Development of a cell-laden thermosensitive chitosan bioink for 3D bioprinting

  • Ku, Jongbeom;Seonwoo, Hoon;Jang, Kyoung-Je;Park, Sangbae;Chung, Jong Hoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.107-107
    • /
    • 2017
  • 3D bioprinting is a technology to produce complex tissue constructs through printing living cells with hydrogel in a layer-by-layer process. To produce more stable 3D cell-laden structures, various materials have been developed such as alginate, fibrin and gelatin. However, most of these hydrogels are chemically bound using crosslinkers which can cause some problems in cytotoxicity and cell viability. On the other hand, thermosensitive hydrogels are physically cross-linked by non-covalent interaction without crosslinker, facilitating stable cytotoxicity and cell viability. The examples of currently reported thermosensitive hydrogels are poly(ethylene glycol)/poly(propylene glycol)/poly(ethylene glycol) (PEG-PPG-PEG) and poly(ethylene glycol)/poly(lactic acid-co-glycolic acid) (PEG/PLGA). Chitosan, which have been widely used in tissue engineering due to its biocompatibility and osteoconductivity, can be used as thermosensitive hydrogels. However, despite the many advantages, chitosan hydrogel has not yet been used as a bioink. The purpose of this study was to develop a bioink by chitosan hydrogel for 3D bioprinting and to evaluate the suitability and potential ability of the developed chitosan hydrogel as a bioink. To prepare the chitosan hydrogel solution, ${\beta}-glycerolphosphate$ solution was added to the chitosan solution at the final pH ranged from 6.9 to 7.1. Gelation time decreased exponentially with increasing temperature. Scanning electron microscopy (SEM) image showed that chitosan hydrogel had irregular porous structure. From the water soluble tetrazolium salt (WST) and live and dead assay data, it was proven that there was no significant cytotoxicity and that cells were well dispersed. The chitosan hydrogel was well printed under temperature-controlled condition, and cells were well laden inside gel. The cytotoxicity of laden cells was evaluated by live and dead assay. In conclusion, chitosan bioink can be a candidate for 3D bioprinting.

  • PDF