• Title/Summary/Keyword: Gel pore

Search Result 254, Processing Time 0.034 seconds

Fabrication and Characterization of Biphasic Calcium Phosphate Scaffolds with an Unidirectional Macropore Structure Using Tertiary-Butyl Alcohol-Based Freeze-Gel Casting Method (동결-젤 주조 공정 기반 삼차부틸알코올을 이용한 단일방향 기공구조를 가지는 이상인산칼슘 세라믹 지지체의 제조 및 특성평가)

  • Kim, Kyeong-Lok;Ok, Kyung-Min;Kim, Dong-Hyun;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.263-268
    • /
    • 2013
  • Porous biphasic calcium phosphate scaffolds were fabricated by a freeze-gel casting technique using a tertiary-butyl alcohol (TBA)-based slurry. After sintering, unidirectional macropore channels of scaffolds aligned regularly along the TBA ice growth direction were tailored simultaneously with micropores formed in the outer wall of the pore channels. The crystallinity, micro structure, pore configuration, bulk density, and compressive strength for the scaffolds were investigated with X-ray diffractometery, scanning electron microscopy analysis, a water immersion method, and a universal test machine. The results revealed that the sintered porosity and pore size generally resulted in a high solid loading which resulted in low porosity and small pore size, which relatively increased the higher compressive strength. After being sintered at $1100-1300^{\circ}C$, the scaffolds showed an average porosity and compressive strength in the range 35.1-74.9% and 65.1-3.0 MPa, respectively, according to the processing conditions.

Effect of Calcination Temperature on Al2O3-ZrO2 Ceramic Prepared by Sol-Gel Process (졸-겔법을 이용하여 제조한 Al2O3-ZrO2 세라믹스에 미치는 하소온도의 영향)

  • 우상국;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.5
    • /
    • pp.423-430
    • /
    • 1987
  • Characteristics of Al2O3-ZrO2 powders prepared by sol-gel process and their sintering behavior were investigated as a function of calcination temperature. The sol-gel processed powders were calcined at 800, 900, 1000, 1100, 1200$^{\circ}C$, and analyzed by X-ray diffraction technique. Pore size and distribution of green compact of the calcined powders were measured by mercury porosimeter. It is suggested that the optimal temperature of calcination for the sintering of Al2O3-ZrO2 powder prepared by sol-gel process is 1100$^{\circ}C$. In the Al2O3-17vol.% ZrO2 sintered specimen, which was sintered at 1600$^{\circ}C$ for 2hrs in air, 69vol.% tetragonal phse existed.

  • PDF

Influence of Pore on Dielectric Constant of Colrdierite Ceramics Prepared by Sol-Gel Process

  • Ryu, Su-Chak
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.99-102
    • /
    • 1998
  • Cordierite ceramics with low dielectric constants were obtained through sol-gel techniques using as metal alkoxides. The powders for the sintered cordierite ceramics were prepared by hydrolysis of metal alkoxides with ethanol and distilled water. In the hydrolysis, the mole ratio of HCI/TEOS was controlled by changing the amount of HCI as a catalyst. The sol-gel derived powders were dried, pressed, and fired at $1300^{\circ}C$. The dried powders were calcined at $800{\circ}C$ for 3hours to remove residual organics. The fired bodies with different dielectric constants were obtained by using HCI adjusted to various mole ratios of HCI/TEOS in the process. The variation of the amount of HCI catalyst led to a significant influence on dielectric contant, which was attributed to the formation of pores in the sintered body. Especially, the porosity of the sintered body influenced the dielectric constants.

  • PDF

Fabrication of Macroporous Carbon Foam with Uniform Pore Size Using Poly(methyl methacrylate) Particles As The Template

  • Kim, Jin-Sil;Rhym, Young-Mok;Shim, Sang-Eun
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.129-134
    • /
    • 2011
  • Herein, macroporous carbon materials were readily prepared by carbonization of cured body of resorcinol and formaldehyde using poly(methyl methacrylate) colloid microspheres which were employed as the template in the gelation of resorcinol with formaldehyde. The gel in the water was solvent exchanged with methanol and the wet gel was dried. After carbonization of the template-gel composite at $800^{\circ}C$, it was found that pores were left corresponding to the size of the template, yielding carbon materials with a fine porous structure with enlarged surface area and significant porosity. Properties of the carbon foams including the structure, morphology, thermal stability, and porosity were investigated. Finally, it was concluded that the method using polymer colloids as the template provided a facile route to prepare carbon foams.

Sol-Gel Template Synthesis and Phase Transitions of $PbZrO_3$ Nanotubes ($PbZrO_3$ 나노튜브의 졸-겔 형판 합성과 상전이)

  • Chang, Ki-Seog;Bu, Sang-Don
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.85-90
    • /
    • 2005
  • We report the phase transition temperatures of the $PbZrO_3$ perovskite nanotubes made by sol-gel template synthesis. The lead zirconate($PbZrO{_3}$) nanotubes were prepared with a chelate sol-gel of zirconium tetrabutoxide($Zr(OBu){_4}$) and leadacetate($Pb(OAc){_2}-3H_2O$). $Whatman^(r)$ anodisc membranes, with a 200nm pore size, served as the template. After removing the template in the 6M-NaOH solution, the $PbZrO{_3}$ nanotubes so far have shown an anomalous transition temperature, $123.6^{\circ}C$ as measured by DSC with a small particle size, 15.4nm determined by X-ray analysis with the aid of Scherrer's equation.

Characterization of Alumina Gel Prepared by Hydrolysis of Al(OC3H7i)3 (Al(OC3H7i)3의 가수분해로부터 얻어진 Al2O3 겔의 특성에 관한 연구)

  • 이서우;문종수;조성백
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.89-94
    • /
    • 1988
  • Alumina gel was prepared by the hydrolysis of aluminum isopropoxide Al(OC3H7i)3 at low temperature. Sample were calcined at the various temperatures for 10 houres in the electric furnace, respectively. In order to investigate the various propertis-thermal properties, pore size and distribution, and the transition of crystals, infrared spectroscopy, thermal analysis, particle size analysis, scanning electron microscopy, and porosimetry were employed. Transparent alumina gel was opalized at 1200$^{\circ}C$. Porosity was about 87% with pores below 0.7$\mu\textrm{m}$ and 55% at 1200$^{\circ}C$. The gel was transformed along the rising of temperature as follows; Boehmite\longrightarrow$\delta$-Al2O3\longrightarrow$\theta$\longrightarrowAl2O3\longrightarrow${\alpha}$-Al2O3.

  • PDF

Characteristics of the Ammonium Diuranate Powders Prepared with Different Experimental Apparatus in Sol-gel Process (졸-겔 방법으로 제조된 Ammonium Diuranate 핵연료 분말의 공정장치 변수에 따른 특성)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Ueom, Sung-Ho;Cho, Moon Sung
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.398-404
    • /
    • 2012
  • This paper describes the spherical ammonium diuranate gel particles which are the intermediated material of the $UO_2$ microsphere for an VHTR(very high temperature reactor) nuclear fuel. The characteristics of the intermediate-ADU gel particles prepared by AWD(ageing, washing, and drying) and FB(fluidized-bed) apparatus were examined and compared in a sol-gel fabrication process. The electrical conductivity of washing filtrate from the FB treating and the surface area of dried-ADU gel particles were higher than those of AWD treating. Also, an internal pore volume in dried-ADU gel particles showed a more decrease in AWD treatment than FB treatment because of decomposition of PVA affected by the washing time. However, the internal microstructures of ADU gel particles were similar regardless of the process variation.

Microstructure and Properties of Organic-Inorganic Hybrids(PDMS/SiO$_2$) Through Variations in Sol-Gel Processing (졸-겔공정의 변수조절을 통해 제조된 유기-무기복합체 (PDMS/SiO$_2$)의 미세구조와 특성)

  • Eun, Hui-Tae;Hwang, Jin-Myeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.94-103
    • /
    • 2001
  • SiO$_2$ and PDMS/SiO$_2$ xerogels which are derived PDMS into TEOS have been synthesized by sol-gel process and controlled pore size and distribution through 2 step acid/base catalyzed processes using HCI and NH$_4$OH as a catalyst. In HCl catalyzed SiO$_2$ and PDMS/SiO$_2$ xerogels, pH and gellation time of xerogel were 2.3~2.5 and 12~13 days, respectively, and the shape of xerogel was identified to pellet type and column type. Under acidic condition of final reaction solution, the hydrolysis rate is accelerating, resulting in long gel times. The shape of xerogel is pellet type. In contrast, under less acidic condition, the condensation rate is accelerating, resulting in shorter gel times and the shape of xerogel is column type. The surface area and average Pore size were changed 400$\rightarrow$600($\m^2$/g) and 15$\rightarrow$28$\AA$, respectively, depending to the increase of the mole ratio of HCl/NH$_4$OH, and represented uniform pore size distribution. It is that all the alkoxide groups are hydrolyzed by HCl after the first step and the condensation rate is enhanced by NH$_4$OH. The regular backbone structures of silica are formed at low temperature and the uniform pores are produced by heat treatment.

  • PDF

Pore Structure Changes in Hardened Cement Paste Exposed to Elevated Temperature (고온 환경에 노출된 시멘트 경화체의 공극 구조 변화)

  • Kang, Seung-Min;Na, Seung-Hyun;Kim, Kyung-Nam;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.48-55
    • /
    • 2015
  • Hardened cement-based materials exposed to the high temperatures of a fire are known to experience change in the pore structure as well as microstructural changes that affect their mechanical properties and tend to reduce their durability. In this experimental investigation, hardened Portland cement pastes were exposed to elevated temperatures of 200, 400, 600, 800, and $1000^{\circ}C$ for 60 minutes, and the resulting damage was studied by thermogravimetry (TG), mercury intrusion porosimetry (MIP) and density measurements. These results revealed that the residual compressive strength is increased at temperatures greater than $400^{\circ}C$ due to a small pore size of 3 nm and/or rehydration of the dehydrated cement paste. However, a loss of the residual strength occurs at temperatures exceeding 500 and $600^{\circ}C$. This can be attributed to the decomposition of hydrates such as portlandite and to an increase in the total porosity.

Preparation of Pore-filled Ion-exchange Membranes using Poly(vinylbenzyl ammoninum salt) (Poly(vinylbenzyl ammonium salt)를 이용한 Pore-filled 이온교환막의 제조)

  • 변홍식
    • Membrane Journal
    • /
    • v.11 no.3
    • /
    • pp.109-115
    • /
    • 2001
  • Pore-filled ion-exchange membranes in which polypropylene(PP) microporous membrane was used as a nascent membrane were prepared by an in-situ cross-linking technique. Poly(vinylbenzyl chloride)(PVBCI) reacted with piperazine(PIP) or 1,4-diaminobicyclo[2,2,2]octane(DABCO) in a di-methylforamide(DMF) solution was filled in the pores of the microporous base membrane. After gellation the remaining chloromethyl groups were, then reacted with an amine such as trimethylamine to form positively charged, ammonium site. This will produce the pore-filled anion-exchange membrane. It was shown that this simple 2 step procedure gave dimensionally stable, pore-filled membranes in which the MG of polymer gel and degree of cross-linking could be easily controlled by the concentration of PVBCI and cross-linker in the starting DMF solution. Specially, high water permeability (7.8 kg/$m^2$hr, host membrane: PP3, MG: 73%, degree of cross-linking: 10%, crosslinker: PIP) at ultra low pressure(100 kPa) indicates the produced pore-filled membranes is usable as a water softening membrane.

  • PDF