• Title/Summary/Keyword: Gel pore

Search Result 254, Processing Time 0.028 seconds

Silica aerogels for potential sensor material prepared by azeotropic mixture (공비혼합물로 제조된 다공성 센서재료용 실리카 에어로젤)

  • Shlyakhtina, A.V.;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.395-400
    • /
    • 2007
  • Ambient drying sol-gel processing was used for monolithic silica ambigels in the temperature range of $130-250^{\circ}C$. A new method of mesopore ambigels, which mean the aerogels prepared by ambient pressure drying process synthesis, is suggested at first. This method includes two important approaches. The first point is that $SiO_{2}$ surface modification of wet gel was performed by trimethylchlorosilane in n-butanol solution. This procedure is provided the silica gel mesopore structure formation. The second point is a creation of the ternary azeotropic mixture water/n-butanol/octane as porous liquid, which is effectively provided removing of water such a low temperature by 2 step drying condition under ambient pressure. The silica aerogels, which were prepared by ambient pressure drying from azeotropic mixture of water/n-butanol/octane, are transparent, crack-free and mesoporous (pore size ${\sim}$ 5.6 nm) with surface area of ${\sim}$ $923{\;}m^2/g$, bulk density of $0.4{\;}g/cm^3$ and porosity of 85 %.

Characteristics of Chlorinated VOCs Adsorption over Thermally Treated Silica Gel (열처리 실리카겔의 염소계 휘발성 유기화합물 흡착특성 연구)

  • Nam, Kyung Soo;Kwon, Sang Soog;Yoo, Kyung Seun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.245-250
    • /
    • 2007
  • Adsorption characteristics of 1,2-dichlorobenzene on the surface of heat treated silica gel were determined by the moment analysis. The heat treatment of the silica gel was performed at temperatures of 150, 500, and $800^{\circ}C$ and pulse-response of 1,2-dichlorobenzene was measured in a gas chromatograph equipped with thermal conductivity detector (TCD) using the packed column. Equilibrium adsorption constants and isosteric heat of adsorption were recorded the highest value at $500^{\circ}C$. This might be due to the increase of interaction between silica surface and 1,2-dichlorobenzene as the decrease of OH concentration and moisture by increase of heating temperature. Axial dispersion coefficient calculated by the moment method was about $0.046{\times}10^{-4}{\sim}1.033{\times}10^{-4}m^2/sec$ and pore diffusivity of heat treated silica gel at $500^{\circ}C$ measured the lowest value. Because heat treating at $800^{\circ}C$ caused the specific surface area to reduce, equilibrium adsorption constants and isosteric heat of adsorption were decreased.

Synthesis of Nanoporous F:SnO2 Materials and its Photovoltaic Characteristic (나노 다공질 FTO 제작 및 광전변환특성 고찰)

  • Han, Deok-Woo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.176-181
    • /
    • 2009
  • In this work, a new type of DSCs based on nanoporous FTO structure is being developed for research aimed at low-cost high-efficiency solar cell application. The nanoporous FTO materials have been prepared through the sol-gel combustion method followed by thermal treatment at $450{\sim}850[^{\circ}C]$. The properties of the nanoporous FTO materials were investigated by IR spectra, BET and TEM analyses, and the photovoltaic performance of the prepared DSCs were examined. It can be seen from the result that the nanoporous FTO exhibited good transparent conductive properties, well suited for DSCs application.

Selective Removal of HCN and Aldehydes in Mainstream Smoke by Impregnated Activated Carbon and Functionalized Silica-gel (기능성 실리카겔과 첨착 활성탄에 의한 주류연 중 시안화수소와 알데히드의 선택적 흡착)

  • Lim Heejin;Shin Chang-Ho;Yang Burm-Ho;Hong Jin-Young;Ko Dongkyun;Lee Young-Tack
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.2
    • /
    • pp.171-177
    • /
    • 2005
  • Coconut based activated carbon and silica-gels were impregnated with 3-aminopropyltri ethoxysilan(APS) and N-(2-aminoethyl)-3-aminopropyl triethoxysilane (AEAPS) in order to investigate the effect of the amine group and the pore size of the supports on the removal of hydrogen cyanide(HCN) and aldehydes in mainstream smoke(MS). The physicochemical properties of the supports were analyzed by using thermal gravity analyzer(TGA), $N_2$ adsorption and desorption isotherms$(BET,\;N_2)$, and SEM-EDS. According to our experimental data, there was no significant difference in the delivery amount of HCN and aldehydes of non-functionalized silica-gels having meso-pores bigger than $20\AA$. In the case of silica-gels functionalized with APS(APS silica-gel), the delivery amounts of hydrogen cyanide(HCN) and aldehydes decreased with the increase of APS concentration. Silica-gel functionalized with AEAPS(AEAPS silica-gel) showed higher removal efficiency than that of APS silica-gels. The delivery amounts of HCN and aldehydes of activated carbon impregnated with APS and AEAPS increased with the increase of the APS and AEAPS concentrations. In accordance with the specific surface area analysis results, APS and AEAPS molecules decreased the specific surface area by blocking the micro-pores of the activated carbon. The volatile organic components removal efficiency by the micro-pores was higher than that of the amine group impregnated into the activated carbon.

Increased Osteoblast Adhesion Densities on High Surface Roughness and on High Density of Pores in NiTi Surfaces

  • Im, Yeon-Min;Gang, Dong-U;Kim, Yeon-Uk;Nam, Tae-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.39.1-39.1
    • /
    • 2009
  • NiTi alloy is widely used innumerous biomedical applications (orthodontics, cardiovascular, orthopaedics, etc.) for its distinctive thermomechanical and mechanical properties such as shape memory effect, super elasticity, low elastic modulus and high damping capacity. However, NiTi alloy is still a controversial biomaterial because of its high Ni content which can trigger the risk of allergy and adverse reactions when Ni ion releases into the human body. In order to improve the corrosion resistance of the TiNi alloy and suppress the release of Ni ions, many surface modification techniques have been employed in previous literature such as thermal oxidation, laser surface treatment, sol-gel method, anodic oxidation and electrochemical methods. In this paper, the NiTi was electrochemically etched in various electrolytes to modify surface. The microstructure, element distribution, phase composition and roughness of the surface were investigatedby scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry(EDS), X-ray diffractometry (XRD) and atomic force microscopy (AFM). Systematic controlling of nano and submicron surface features was achieved by altered density of hydro fluidic acid in etchant solution. Nanoscale surface topography, such as, pore density, pore width, pore height, surface roughness and surface tension were extensively analyzed as systematical variables.Importantly, bone forming cell, osteoblast adhesion was increased in high density of hydro fluidic treated surface structures, i.e., in greater nanoscale surface roughness and in high surface areas through increasing pore densities.All results delineate the importance of surface topography parameter (pores) inNiTi to increase the biocompatibility of NiTi in identical chemistry which is crucial factor for determining biomaterials.

  • PDF

A Study on the Relationship between the Pore Volume Distributions of Some Adsorbents Including Charcoal and the Rates of Adsorption of a Number of Cigarette Aerosol Ingredients such as Tar, Nicotine and etc. (활성탄을 포함하는 몇 가지 흡착제의 동공부피 분포와 이들의 흡착제에 대한 타르, 유기산 등 연초 에어로솔 성분의 흡착률과의 관련성)

  • Ick Kyun Kang;Sang Hyun Han;Yong Kwon Kim;Eun Hee Cha
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.350-356
    • /
    • 1989
  • The analysis of adsortion behaviors of some cigarett aerosol ingredients such as tar, nicotine, carbon monoxide and a number of organic acids has shown that the rates of adsorption of the adsorbates of lower boiling point had increased in accordance with increasing cumulative pore volume, while that of higher doiling point decreased with increasing pore volume of smaller radius. The adsorbents used here were charcoal, silica gel, alumina, and activated clay. The common principle that the adsorbents of greater specific surface area adsorb the larger amount of adsorbates appeared to be disturbed in the adsortion of higher boiling point adsorbates. This confirmation was made mainly by analyzing the adsorption behaviors with regard to the pore volume distributions evaluated on the bases of desorption isotherms.

  • PDF

Strength and Pore Characteristics of Alkali-activated Slag-Red Mud Cement Mortar used Polymer According to Red Mud Content (레드머드 대체율에 따른 폴리머 혼입 알칼리활성화 슬래그-레드머드 시멘트모르타르의 강도 및 기공특성)

  • Kwon, Seung-Jun;Kang, Suk-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.26-33
    • /
    • 2016
  • The alkali-slag-red mud(ASRC) cement belongs to clinker free cementitious material, which is made from alkali activator, blast-furnace slag(BFS) and red mud in designed proportion. This study is to investigate strength and pore characteristics of alkali-activated slag cement(NC), clinker free cementitious material, and ordinary portland cement(C) mortars using polymer according to red mud content. The results showed that the hardened alkali-activated slag-red mud cement paste was mostly consisted of C-S-H gel, being very fine in size and extremely irregular in its shape. So the hardened ASRC cement paste has lower total porosity, less portion of larger pore and more portion of smaller pore, as compared with those of hardened portland cement paste, and has higher strength within containing 10 wt.(%) of alkali-activated slag cement(NC) substituted by red mud.

Fabrication of nanoporous ceramic membrane for water treatment (수처리용 나노스케일 다공성 세라믹 멤브레인 제조)

  • Han, Hyuk Su;Lee, Ho Jun;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.77-81
    • /
    • 2019
  • Recently, as the problem of environmental pollution emerges, various methods of eco-friendly water treatment method are being developed. Polymer membranes, which are currently leading the market, are inexpensive, but have many problems in terms of chemical resistance and durability. Thus, ceramic membrane has been attracted great attention as high-efficiency water treatment due to excellent durability and chemical resistant. In this study, ceramic membranes were developed via pore structure, size control, and surface treatment. The pore size of the membrane was controlled through the formation of $ZrO_2$ and $TiO_2$ coating films. Tape casting and sol-gel process were used to form a ceramic coating film with nanopores on the surface of the membrane. Microstructure analysis of ceramic membrane and pore size analysis of the coating film were conducted and the change of water treatment characteristics was observed.

Optimal Porous Structure of MnO2/C Composites for Supercapacitors

  • Iwamura, Shinichiroh;Umezu, Ryotaro;Onishi, Kenta;Mukai, Shin R.
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.115-121
    • /
    • 2021
  • MnO2 can be potentially utilized as an electrode material for redox capacitors. The deposition of MnO2 with poor electrical conductivity onto porous carbons supplies them with additional conductive paths; as a result, the capacitance of the electrical double layer formed on the porous carbon surface can be utilized together with the redox capacitance of MnO2. However, the obtained composites are not generally suitable for industrial production because they require the use of expensive porous carbons and/or inefficient fabrication methods. Thus, to develop an effective preparation procedure of the composite, a suitable structure of porous carbons must be determined. In this study, MnO2/C composites have been prepared from activated carbon gels with various pore sizes, and their electrical properties are investigated via cyclic voltammetry. In particular, mesoporous carbons with a pore size of around 20 nm form a composite with a relatively low capacitance (98 F/g-composite) and poor rate performance despite the moderate redox capacitance obtained for MnO2 (313 F/g-MnO2). On the other hand, using macro-porous carbons with a pore size of around 60 nm increases the MnO2 redox capacitance (399 F/g-MnO2) as well as the capacitance and rate performance of the entire material (203 F/g-composite). The obtained results can be used in the industrial manufacturing of MnO2/C composites for supercapacitor electrodes from the commercially available porous carbons.

Media Characteristics of PVA-derivative Hydrogels Using a CGA Technique (CGA 제조기법을 응용한 PVA 하이드로젤의 담체 특성)

  • Yoon, Mi-Hae; Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.299-308
    • /
    • 2009
  • We manufactured PVA-derived hydrogels using a foam generation technique that has been widely used to prepare colloidal gas aphrons(CGA). These gels were differentiated to the conventional gels such as for medical or pharmaceutical applications, which have tiny pores and some crystalline structure. Rather these should be used in de-pollution devices or adhesion of cells or biomolecules. The crosslinkers used in this work were amino acid, organic acid, sugars and lipids(vitamins). The structures of the gels were observed in a scanned electron microscope. Amino acids gels showed remarkably higher swelling ratios probably because their typical functional groups help constructing a highly crosslinked network along with hydrogen bonds. Boric acid and starch would catalyze dehydration while structuring to result in much lower water content and accordingly high gel content, leading to less elastic, hard gels. Bulky materials such as ascorbic acid or starch produced, in general, large pores in the matrices and also nicotinamide, having large hydrophobic patches was likely to enlarge pore size of its gels as well since the hydrophobicity would expel water molecules, thus leading to reduced swelling. Hydrophilicity(or hydrophobicity), functional groups which are involved in the reaction or physical linkage, and bulkiness of crosslinkers were found to be more critical to gel's cross linking structure and its density than molecular weights that seemed to be closely related to pore sizes. Microscopic observation revealed that pores were more or less homogeneous and their average sizes were $20{\mu}m$ for methionine, $10-15{\mu}m$ for citric acid, $50-70{\mu}m$ for L-ascorbic acid, $30-40{\mu}m$ for nicotinamide, and $70-80{\mu}m$ for starch. Also a sensory test showed that amino acid and glucose gels were more elastic meanwhile acid and nicotinamide gels turned out to be brittle or non-elastic at their high concentrations. The elasticity of a gel was reasonably correlated with its water content or swelling ratio. In addition, the PVA gel including 20% ascorbic acid showed fair ability of cell adherence as 0.257mg/g-hydrogel and completely degraded phenanthrene(10 mM) in 240 h.