• Title/Summary/Keyword: Gel Layer

Search Result 630, Processing Time 0.031 seconds

In Situ Shrinkage and Stress Development for $\textrm{PbTiO}_3$, Films Prepared by Sol-gel Process (Sol-gel법으로 제조된 $\textrm{PbTiO}_3$ 박막의 온도에 따른 수축 및 응력거동)

  • Park, Sang-Myeon
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.735-739
    • /
    • 1999
  • In this study we investigated stress development and shrinkage of thickness for a single $PbTiO_3$(PT) layer prepared by sol-gel processing. Changes of microhardness for multideposited PT layers with temperatures are also monitored to understand the densification of thin films. Single PT layer shrank rapidly from room temperature to$ 220^{\circ}C$ yielding 83% of total shrinkage observed up to $500^{\circ}C$. A tensile stress of ~75MPa developed in an as-spun layer, and increased steadily beyond $130^{\circ}C$ until it reaches the maximum value of 147MPa at $250^{\circ}C$. The significant decrease of tensile stress in the film beyond $370^{\circ}C$ indicates that thermal expansion mismatch between the film and the substrate dominates the stress behavior in this temperature range. Microhardness of the multideposited coatings also increased rapidly above $300^{\circ}C$ regardless of the pyrolysis temperatures used. Large amount of perovskite phase formed in multideposited coatings after $550^{\circ}C$ may be due partly to enhanced homogeneous nucleation in the thicker coating.

  • PDF

Hydrophillic and Hydrophobic Properties of Sol-Gel Processed Sillica Coating Layers

  • Kim, Eun-Kyeong;Lee, Chul-Sung;Hwang, Tae-Jin;Kim, Sang-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.505-505
    • /
    • 2011
  • The control of wettability of thin films is of great importance and its success surely brings us huge applications such as self-cleaning, antifogging and bio-passive treatments. Usually, the control is accomplished by modifying either surface energy or surface topography of films. In general, hydrophobic surface can be produced by coating low surface energy materials such as fluoropolymer or by increasing surface roughness. In contrast, to enhance the hydrophillicity of solid surfaces, high surface energy and smoothness are required. Silica (SiO2) is environmentally safe, harmless to human body and excellently inert to most chemicals. Also its chemical composition is made up of the most abundant elements on the earth's crest, which means that SiO2 is inherently economical in synthesis. Moreover, modification in chemistry of SiO2 into various inorganic-organic hybrid materials and synthesis of films are easily undertaken with the sol-gel process. The contact angle of water on a flat silica surface on which the Young's equation operates shows ~50o. This is a slightly hydrophilic surface. Many attempts have been made to enhance hydrophilicity of silica surfaces. In recent years, superhydrophilic and antireflective coatings of silica were fabricated from silica nanoparticles and polyelectrolytes via a layer-by-layer assembly and postcalcination treatment. This coating layer has a high transmittance value of 97.1% and a short water spread time to flat of <0.5 s, indicating that both antireflective and superhydrophilic functions were realized on the silica surfaces. In this study, we assessed hydrophillicity and hydrophobicity of silica coating layers that were synthesized using the sol-gel process. Systematic changes of processing parameters greatly influence their surface properties.

  • PDF

Development of Hybrid Sol-Gel Coating to Prevent Corrosion of Magnesium Alloys (마그네슘 합금의 방청을 위한 하이브리드 졸-겔 코팅제의 개발)

  • Lee, Dong Uk;Kim, Young Hoon;Moon, Myung Jun
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • The high rate of corrosion of magnesium alloys makes it limited for industrial applications. Therefore, surface treatment is required to enhance their corrosion resistance. In our study, a chemical conversion coating for protecting the corrosion of the magnesium alloy, AZ31B, was prepared by using a phosphate-permanganate solution. The chemical conversion coating had a limited protection ability due to defects arising from cracks and pores in the coating layer. The sol-gel coating was prepared by using trimethoxymethylsilane (MTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursors, and aluminum acetyl acetonate as a ring opening agent. The corrosion protection properties of sol-gel and conversion coatings in 0.35wt% NaCl solution were measured by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The EIS results indicated that the resistance of the chemical conversion coating with the sol-gel coating was significantly improved through the sol-gel sealed phosphate-permanganate conversion coating. The results of the potentiodynamic polarization test revealed that the sol-gel coating decreased the corrosion current density ($I_{corr}$). The SEM image showed that the sol-gel coating sealed conversion coating and improved corrosion protection.

Polarity-tuned Gel Polymer Electrolyte Coating of High-voltage LiCoO2 Cathode Materials

  • Park, Jang-Hoon;Cho, Ju-Hyun;Kim, Jong-Su;Shim, Eun-Gi;Lee, Yun-Sung;Lee, Sang-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • We demonstrate a new surface modification of high-voltage lithium cobalt oxide ($LiCoO_2$) cathode active materials for lithium-ion batteries. This approach is based on exploitation of a polarity-tuned gel polymer electrolyte (GPE) coating. Herein, two contrast polymers having different polarity are chosen: polyimide (PI) synthesized from thermally curing 4-component (pyromellitic dianhydride/biphenyl dianhydride/phenylenediamine/oxydianiline) polyamic acid (as a polar GPE) and ethylene-vinyl acetate copolymer (EVA) containing 12 wt% vinyl acetate repeating unit (as a less polar GPE). The strong affinity of polyamic acid for $LiCoO_2$ allows the resulting PI coating layer to present a highly-continuous surface film of nanometer thickness. On the other hand, the less polar EVA coating layer is poorly deposited onto the $LiCoO_2$, resulting in a locally agglomerated morphology with relatively high thickness. Based on the characterization of GPE coating layers, their structural difference on the electrochemical performance and thermal stability of high-voltage (herein, 4.4 V) $LiCoO_2$ is thoroughly investigated. In comparison to the EVA coating layer, the PI coating layer is effective in preventing the direct exposure of $LiCoO_2$ to liquid electrolyte, which thus plays a viable role in improving the high-voltage cell performance and mitigating the interfacial exothermic reaction between the charged $LiCoO_2$ and liquid electrolytes.

Studies on Antibacterial Substance from Lactobacillus bulgaricus (Lactobacillus bulgaricus가 생산한 항균물질(抗菌物質)에 관한 연구)

  • Kim, Dong Shin;Jung, Sung In
    • Current Research on Agriculture and Life Sciences
    • /
    • v.7
    • /
    • pp.109-116
    • /
    • 1989
  • This study was carried out to confirm the agent responsible for the antibacterial activity in milk culture or Lactobacillus bulgaricus to extract and purify it. The following results were summarized as followings : The antibacterial agent was extracted from the cultured skim milk with methanol and acetone and was purified by Sephadex G-50 gel filteration and thin layer chromatography on silica gel. The antibacterial substance other than lactic acid was confirmed by turbidimetric technique using the neutralized culture filtrate which inhibited the growth of Bacillus subtilis. The purified agent showed inhibitory activity against Bacillus subtilis, Escherichica coli, Pseudomonas fluorescens Staphylococcus aureus, Proteus vulgaris and Shigells $dysenteria^2$. The agent obtained from thin layer chromatography was free from $H_2O_2$ or lactic acid.

  • PDF

Formation of Liquid Crystal Gel with Hydrogenated Lecithin and Its Effectiveness

  • Kim In-Young;Lee Joo-Dong;Ryoo Hee-Chang;Zhoh Choon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.181-191
    • /
    • 2003
  • This study described about method that form liquid crystal gel (LCG) by main ingredient with hydrogenated lechin (HL) in OW emulsion system. Result of stability test is as following with most suitable LCG's composition. Composition of LCG is as following. To form liquid crystal, an emulsifier used $4.0\;wt\%$ of cetostearyl alcohol (CA) by $4.0\;wt\%$ of HL as a booster, Moisturizers contained $2\;wt\%$ of glycerin and $3.0\;wt\%$ of 1.3-butylene glycol (1,3-BG). Suitable emollients used $3.0\;wt\%$ of cyclomethicone, $3.0\;wt\%$ of isononyl isononanoate (ININ), $3.0\;wt\%$ of cerpric/carprylic triglycerides (CCTG), $3.0\;wt\%$ of macademia nut oil (MNO) in liquid crystal gel formation. On optimum conditions of LCG formation, the pHs were formed all well under acidity or alkalinity conditions. Considering safety of skin, PH was the most suitable $\pm61.0$ ranges. The stable hardness of LCG formation appeared best in $32\;dyne/cm^2.$ Particle of LCG is forming size of $1{\~}20\;{\mu}m$ um range, and confirmed that the most excellent LCG is formed in $1{\~}6\;{\mu}m$ range. According to result that observe shape of LCG with optical or polarization microscope, LCG could was formed, and confirmed that is forming multi-layer lamellar type structure around the LCG. Moisturizing effect measured clinical test about 20 volunteers. As a result, moisturizing effect of LCG compares to placebo cream was increased $30.6\%$. This could predicted that polyol group is appeared the actual state because is adsorbed much to round liquid crystal droplets to multi-lamellar layer's hydrophilic group. It could predicted that polyol group is vast quantity present phase that appear mixed because is adsorbed to round liquid crystal to multi-lamellar layer's hydrophilic group. This LCG formation theory may contribute greatly in cosmetics and pharmacy industry development.

Effect of Film Thickness on Structural, Electrical, and Optical Properties of Sol-Gel Deposited Layer-by-layer ZnO Nanoparticles

  • Shariffudin, S.S.;Salina, M.;Herman, S.H.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.102-105
    • /
    • 2012
  • The structural, electrical, and optical properties of layer-by-layer ZnO nanoparticles deposited using sol-gel spin coating technique were studied and now presented. Thicknesses of the thin films were varied by increasing the number of deposited layers. As part of our characterization process, XRD and FE-SEM were used to characterize the structural properties, current-voltage measurements for the electrical properties, and UV-Vis spectra and photoluminescence spectra for the optical properties of the ZnO thin films. ZnO thin films with thicknesses ranging from 14.2 nm to 62.7 nm were used in this work. Film with thickness of 42.7 nm gave the lowest resistivity among all, $1.39{\times}10^{-2}{\Omega}{\cdot}cm$. Photoluminescence spectra showed two peaks which were in the UV emission centered at 380 nm, and visible emission centered at 590 nm. Optical transmittance spectra of the samples indicated that all films were transparent (>88%) in the visible-NIR range. The optical band gap energy was estimated to be 3.21~3.26 eV, with band gap increased with the thin film thickness.

Dielectric properties of highly (100) oriented (Pb0.5, Sr0.5)TiO3thin films grown on Si with MgO buffer layer (초고주파 응용을 위한 MgO 버퍼층을 이용한 PST(100) 박막의 유전적 특성)

  • Eom, Joon-Chul;Lee, Sung-Gap;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.768-771
    • /
    • 2004
  • Pb0.5,Sr0.5TiO3(PST) thin films were deposited on Si with MgO (100) buffer layer by the alkoxide-based sol-gel method. Structural and dielectric properties of PST thin films for the tunable microwave device applications were investigated. For the MgO/Si buffer layer, the PST thin films exhibited highly (100) orientation. The MgO buffer layer affects the stress state of the (100)-oriented PST thin films. The dielectric constant, tunability, and FOM of the highly (100)-oriented PST thin film increased with increasing annealing temperature due to the decrease in lattice distortion. The differences in dielectric properties may be attributed to the change in the film stress. The dielectric constants, dielectric loss and tunability of the PST thin films deposited on the MgO/Si substrates measured at 10 kHz were 822, 0.025, and 80.1%, respectively.

  • PDF

Voltammetric Studies of Anion Transfer Reactions Across a Microhole Array-Water/PVC-NPOE Gel Interface

  • Hossain, Md. Mokarrom;Girault, Hubert H.;Lee, Hye-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1734-1740
    • /
    • 2012
  • Voltammetric characterization of hydrophilic anion transfer processes across a 66 microhole array interface between the water and polyvinylchloride-2-nitrophenyloctylether gel layer is demonstrated. Since the transfer of hydrophilic anions including $Br^-$, $NO_3{^-}$, $I^-$, $SCN^-$ and $ClO_4{^-}$ across the liquid/gel interface usually sets the potential window within a negative potential region, a highly hydrophobic organic electrolyte, tetraoctylammonium tetrakis(pentafluorophenyl)borate, providing a wider potential window was incorporated into the gel phase. The transfer reaction of perchlorate anions across the microhole-water/gel interface was first studied using cyclic voltammetry and differential pulse voltammetry. The full voltammetric response of perchlorate anion transfer was then used as a reference for evaluating the half-wave transfer potentials, the formal transfer potentials and the formal Gibbs transfer energies of more hydrophilic anions such as $Br^-$, $NO_3{^-}$, $I^-$, and $SCN^-$. The current response associated with the perchlorate anion transfer across the micro-water/gel interface versus the perchlorate concentration was also demonstrated for sensing applications.

Concentration of Fresh Gel from Aloe vera L. by Using Ultrafiltration Process (한외여과 공정에 의한 알로에 베라 겔 농축)

  • Baek, Jin-Hong;Kim, Sung-A;Lee, Shin-Young
    • KSBB Journal
    • /
    • v.23 no.2
    • /
    • pp.169-176
    • /
    • 2008
  • The concentration of fresh gel from Aloe vera L. by using ulfrafiltration (UF) process was investigated and analyzed. The two membranes (organic and ceramic) with different molecular weight cut-off (MWCO) and modules (flat sheet and tubular) was used. Under optimum operation conditions, ceramic (zirconium dioxide) tubular membrane with MWCO of 50 kDa resulted in higher flux, less fouling, more turbid, higher total solid, higher polysaccharide and less aloin content. Optimum operation conditions were transmembrane pressure of 1.0 bar, feed velocity of 240 L/hr and temperature of $23^{\circ}C$. Volume concentration factor of aloe gel was 3.13 at permeate flux of $51.1\;L/m^2{\cdot}hr$ after processing time of 1.66 hr. Aloin in fresh aloe gel by UF process was effectively removed as permeate and bioactive polysaccharide content was 2.1 times higher than that of fresh aloe gel. These results allowed a very good level of concentration degree and polysaccharide content. Thus, ultrafiltration process of this study was suitable for the concentration of fresh aloe gel though the aloe concentrate showed both the viscosity decrease and partially separation of liquid layer during storage at $4^{\circ}C$.