• 제목/요약/키워드: Gear vibration

검색결과 473건 처리시간 0.022초

기어열의 축간거리 조절을 통한 진동/소음 저감에 대한 연구 (A Study on the Vibration/Noise Reduction of a Gear Driving System by Adjusting the Distance between Gear Shafts)

  • 김재실;이원창;이종판
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.697-703
    • /
    • 2006
  • This article proposes a new technique for the reduction of vibration and noise in the geared system by adjusting the distance between gear shafts. The vibration and noise may be produced by the abnormal force applied to the tooth face. And the force may be the cause of ununiform velocity in the driven shaft. If the velocity is obtained to be uniform by adjusting the distance between shafts. the vibration and noise may be reduced to some extent. In order to review, a dynamic analysis model for the gear train used in a mill turret and a test rig are developed. The velocities in the driven shaft are calculated by dynamic simulations for the model and noises in the test rig are measured with varying of the distance between shafts. The comparison of simulation and test data shows that the distance between shafts at the most uniform velocity has the lowest level of noise.

주파수 응답해석을 통한 풍력발전기용 기어박스의 동특성해석 (Vibration Analysis of wind turbine gearbox with frequency response analysis)

  • 박현용;박정훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.178.2-178.2
    • /
    • 2010
  • The wind turbine gearbox is important rotating part to transmit torque from turbine blade to generator. Generally, gear shaft which rotates causes vibration by influence of stiffness and mass with gear shaft. Root cause of this vibration source is well known to gear transmission error that is decided from gear tooth property. Transmission error excites a gear, and makes excitation force that is vibrated shaft. This vibration of shaft is transmitted to gearbox housing through gearbox bearing. If the resonance about which the natural frequency of the gearbox accords with shaft exciting frequency occurs, a wind turbine can lead to failure. The gearbox for wind turbine should be considered influence of vibration as well as the fatigue life and its performance by such reason. The cause to vibration should be closely examined to reduce influence of such vibration. In this paper, the cause of the vibration which occurs by a gearbox is closely examined and the method which can reduce the vibration which occurred is shown. It is compared with vibration test outcome of a 3MW gearbox for verification of the method shown by this paper.

  • PDF

클러치 댐퍼 설계 기법 연구 (A Study on the Clutch Damper Design Technique)

  • 안병민;장일도;최은오;홍동표;정태진
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.1031-1037
    • /
    • 1997
  • The main torsional vibration source of the driveline is the fluctuation of the engine torque. The gear rattle is generated by an impact in the backlash due to this torsional vibration. Optimization of the clutch torsional characteristic is one of the effective methods to reduce the idle gear rattle. Many researches have been reported on this problem but only few of them give sufficient consideration to the detail clutch modeling and clutch design parameters (stiffness, hysteresis torque, preload, first stage length). This paper pays attention to the gear impact mechanism and clutch design parameters to reduce the idle gear rattle with computer simulation.

  • PDF

래틀 진동을 위한 설계 기법 연구 (A Study on the Design Technique to Reduce the Rattle Vibration)

  • 안병민;장일도;홍동표;정태진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.562-566
    • /
    • 1997
  • The main torsional vibration source of the driveline is the fluctuation of the engine torque. The gear rattle is impacts generating in the backlash of the free gear due to this torsional vibration Optimization of the clutch torsional characteristic is one of the effective methods to reduce the idle gear rattle. Many researches have been reported on this problem but only few of them give sufficient consideration to the full clutch design parameters(stiffness, hysteresis torque, preload, first stage length) and drag torque This paper pays attention to the gear impact mechanism, clutch design parameters and drag torque to reduce the idle gear rattle with computer simulation.

  • PDF

기어의 백래쉬를 고려한 승용차 조향계의 동특성 연구 (Dynamic Analysis of Vehicle Steering System Including Gear Backlash)

  • 김종관
    • 한국생산제조학회지
    • /
    • 제5권3호
    • /
    • pp.40-49
    • /
    • 1996
  • The problem related to the rotational vibration at steering wheel end of passenger cars during high speed driving is investigated. to analyze vibration of steering wheel, a steering system of passenger car is modelled in twelve degrees of freedom including backlash effect of rack and pinion gear system. The one degree of freedom system with backlash in investigated by the analytical method. Consequently the skeleton curve and the frequency response curves are computed. The steering system is analyzed by the numerical simulation using the 4th order Runge-Kutta method, the obtained results are compared with the experimental data. Also the effects of the change of rack gear tooth stiffness and backlash on the acceleration level of steering wheel are investigated. As a result, it can be found that the acceleration level of steering wheel becames lower as the rack gear tooth stiffness becames higher, and that acceleration level becames high as the magnitude of backlash between rack and pinion gear increase.

  • PDF

스퍼기어와 헬리컬기어의 동적 특성 비교 (Comparison of Dynamic Characteristics of Spur Gears and Helical Gears)

  • 박찬일;조도현
    • 한국소음진동공학회논문집
    • /
    • 제22권4호
    • /
    • pp.358-364
    • /
    • 2012
  • This work dealt with dynamic characteristics of spur gear and helical gear system to understand the gear vibration and noise. To find out dynamic characteristics in the gear system, a finite element model and an analytic model for the gear system were used. Using the models, the natural frequency and mode-shape characteristics of spur gears and helical gears were calculated. Two models show that natural frequencies of helical gears were lower than those of spur gears. Mode-shape characteristics of gear pairs by analytical model and some issues of finite element modeling were also discussed. Impact test was used to validate the finite element model.

전달오차와 백래쉬에 의한 기어 구동계의 비선형 동특성 해석 (Nonlinear Dynamic Analysis of Gear Driving System due to Transmission Error and Backlash)

  • 최연선;이봉현;신용호
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.69-78
    • /
    • 1997
  • Main sources of the vibration in gear driving system are transmission error and backlash. Transmission error is the difference of the rotation between driving and driven gear due to tooth deformation and profile error. Vibro-impacts induced by backlash between meshing gears lead to excessive vibration and noise in many geared rotation systems. Nonlinear dynamic characteristics of the gear driving system due to transmi- ssion error and backlash are investigated. Transmission error is calculated for spur gear. Nonlinear equation of motion for the gear driving system is developed with the calculated transmission error and backlash. Numerical analysis of the equation and the experimental results show the existence of meshing frequency, superharmonic compon- ents. Instability of the gear driving motion is found on the basis of Mathieu equation. Rattle vibration due to backlash is also discussed on the basis if nonlinear jump phenomenon.

  • PDF

기어구동에 의한 화인진동해석 (Whine Vibration in Gear Drive)

  • 최연선;신용호;김기범
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3246-3252
    • /
    • 1994
  • The vibration of meshing gear system is originated form teeth deformation, teeth contact ratio, profile error, etc. The gear vibration is classified as whine vibration during meshing and as rattle vibration during idling. In this study, the whine vibration is investigated under the assumption of piecewise linearity of elastic stiffness due to the variation of meshing. Numerical, theoretical and experimental investigations show the existence of the superharmonic components of the second and the third order. consistently It can be concluded that the superharmonic components in whine vibration of meshing gear is originated from the stiffness variation. It also shows that the higher order harmonics are reduced on the increase of motor speed.

증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰 (A Detailed Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-Bearing system)

  • 이안성;하진웅;최동훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.722-728
    • /
    • 2001
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element this paper intends to look into in detail the coupled lateral and torsional vibration characteristics in a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled analyses natural vibration frequencies and their mode shapes upon varying the gear mesh stiffness, and also by comparing the strain energies of lateral and torsional vibration modes. Results have shown that some modes may have coupled lateral and torsional mode characteristics as the gear mesh stiffness increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, i.e., the dominant mode changes from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

  • PDF

헬리컬 기어시스템의 진동특성 연구 (A Study on Vibration Characteristics of Helical Gear Pairing)

  • 이형우;정동현;박노길
    • 소음진동
    • /
    • 제10권1호
    • /
    • pp.74-81
    • /
    • 2000
  • The vibrational model of a helical gear pair is developed with considering the elastic deformation of the active teeth and the body to be a rigid. The main source of vibration in geared system which has been known to be the gear transmission error is mathematically formulated and used for the analysis of vibrational characteristics of geared system. As an example, a simple geared system containing a helical gearing is considered. The critical speeds are found by the campbell diagram and compared with the experimental results.

  • PDF