• Title/Summary/Keyword: Gear Train

Search Result 183, Processing Time 0.027 seconds

An analytical Study on the Performance Improvement for Both Electric and Elecro-hydraulic Type High Power Drive System through Damping Factor (전기 및 전기유압구동 시스템에서 댐핑증대를 통한 성능향상 해석 연구)

  • ;;Lanbers
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.286-292
    • /
    • 1993
  • The classical way to improve the control performance is studied on the aspects of gun/turret deive systens. Two ways are discussed comparadively ; electrical case and electro-hydraulic case. System parameters are analytically studied in terms of resonance frequencies, and damping and gear train ratio effects are checked in relation to resonance frequency increase. Benefit of the feedback is discussed to increase the damping of the natural frequency lending to bandwidth increase.

  • PDF

Loss characteristic analysis of propulsion motor applied for high speed train (차세대 고속철도용 견인전동기 손실특성 해석)

  • Lee, Dong-Su;Kim, Shang-Hoon;Lee, Sang-Gon;Jung, Sang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1376-1382
    • /
    • 2010
  • The propulsion Motor system has changed from the DC motor system to the induction motor system. Although the induction motor system has almost reached the stage of maturity, this system also need changed to the IPMSM system for direct drive without reduction gear. Thus, the IPMSM(Interior buried Permanent magnet synchronous Motor) has been adopted to meet the driving specification. In this paper, loss characteristic analysis of IPMSM has been performed using adopted F.E.M.

  • PDF

Fault Analysis of the Wind Turbine Drive Train in the Quefrency Region (큐프렌시 영역 해석을 통한 드라이브 트레인 결함 분석)

  • Park, Yong-Hui;Shi, Wei;Park, Hyun-Chul
    • New & Renewable Energy
    • /
    • v.9 no.3
    • /
    • pp.5-13
    • /
    • 2013
  • In the previous research, dynamic results have been analyzed in the time and frequency regions. Time and frequency region can be transformed by the Fourier transform. This transform is very useful about analyzing system behaviors. However, because of coupling, it cannot give clear results in the real system including lots of defects. In this paper, we introduced the analysis based on quefrency region to represent physical means clearly from complicated results. We simulated the drive train system which has defects, and compared between frequency and quefrency region to show its excellence. To do this process, We established mathematical model. The equation of motion was derived by the Lagrange equation and constraint equations. The constraint equation included relationships about gear mesh, flexibility of shaft. About numerical analysis, the Newmark beta method was used to get results. And FFT (Fast Fourier Transform) which converts results from time domain to frequency, qufrequency was used.

DESIGN OF A SINGLE MODE VARIABLE BRIDGE TYPE SPLIT-POWERED CVT WITH AN INNER-SPHERICAL CONTINUOUSLY VARIABLE UNIT

  • Seong, S.H.;Lee, H.W.;Choi, J.H.;Park, N.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.799-806
    • /
    • 2007
  • One method for improving the torque capacity of the CVT is to use a split-powered CVT(SPCVT) to reduce the power transmitted into a continuously variable unit(CVU). A variable bridge SPCVT with two planetary gear units(PGUs), which are composed of a sun gear, a ring gear, and carrier and planetary gears, can minimize the power to the CVU. However, a SPCVT with a conventional CVT should possess a dual mode, which would allow the conventional CVT to be used at high speeds and an additional gear train to be used at low speeds. The inner-spherical CVU(ISCVU) with an inner and outer spherical contact mechanism developed in this study can cover the range from low to high speeds. The rated power and the overall speed ratios were 100 kW and $0.09{\sim}0.36$, respectively. Power efficiency was numerically calculated to be over 90% over the speed ratio range of $0.1{\sim}0.29$. The maximum shear stress at the two contact areas of the rotor pairs, the minimum life and the overall size were estimated to be 700 MPa, 276 kh and $350{\times}350{\times}400mm^3$, respectively. This study shows that an ISCVU and a variable bridge type PGU can realize the SPCVT with a single mode for a vehicle.

Noise Prediction of Korea High Speed Train (KHST) and Specification of Sub-components (한국형 고속전철 차량소음 예측 및 부품 소음관리방안)

  • ;;;H.W. Thrane
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.917-923
    • /
    • 2002
  • KITECH and ODS performed a study of internal and external noise prediction of the KHST test train. The object of this study was 3 kind of cars; trailer car(TT2), motorized car(TM1) and power car(TP1) and the predicted noise was calculated for the two different driving speeds in free field and tunnel conditions. Data of carbody design and noise sources were delivered from each manufactures. Some of noise sources which were not available in project team, were chosen by experiences of ODS. Internal noise level of each car were predicted for two cases i.e, at 300 km/h and 350 km/h. In addition sound transmission path and dominant noise sources were also investigated of each section of car, which is circular shell typed part of whole carbody. In case of TT2, the dominating sound transmission path is floor in terms or structure-borne noise and air-borne noise. The main noise sources are structure-borne noise from the yaw-damper and air-borne noise from the wheel/rail contact, whereas the dominating sound transmission path of TM1 are floor and sidewall below the window in terms of structure-borne noise. The main noise sources of TM1 are structure-borne noise from motor/gear unit and the yaw-damper in the free field, and air-borne noise from the wheel/rail contact and structure-borne noise from motor/gear unit in the tunnel. Through the external noise prediction for the KHST test train formation, the noise form the wheel/rail contact is estimated as one of the major sources. In addition, the noise specification of sub-component was proposed for managing each sub-surpplier to reach the KHST noise requirement. The specification provide the sound power of machinery part and transmission loss of component of carbody structure. The predicted noise level in each case exceeded the required limit. Through this study, the noise characteristics of the test train were investigated by simulation, and then the actual test will be performed in near future. Both measured and calculated data will be compared and further work for noise reduction will be continued.

  • PDF

Torque Disturbance Analysis of Missile Hatch System by Spline Backlash (스플라인 백래시에 의한 유도탄 해치시스템의 토크 외란 분석)

  • Byun, Young Chul;Kang, E Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.89-99
    • /
    • 2014
  • This paper presents the experimental torque disturbance analysis of a missile hatch system by spline backlash. The missile hatch system uses a spline and gear train for vertical elevation of the heavy hatch. The spline used for the rotation shaft of the hatch is generally used for automotive driving parts that transmit high amounts of power. It has an angular backlash, which results in jerks. Backlash of the hatch spline influences hatch swinging. The spline backlash and hatch swing are experimentally analyzed by measuring the hatch's rotation angle and acceleration. Hatch swing is visually observable for a short period, and it is measured by measuring the rotation angle variation and hatch acceleration. The shape of fluctuation and duration time of hatch angle variation are similar to those of torque. This shows that the hatch swing due to spline backlash generates torque disturbances.

Development of Conical Spring-based Jumping Mechanism for a Portable Robot (소형로봇을 위한 원추형 스프링 기반의 도약 메커니즘의 개발)

  • Kim, Byeong-Sang;Lee, Jang-Woon;Kim, Hyun-Jung;Vu, Quy-Hung;Song, Jae-Bok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1195-1200
    • /
    • 2007
  • It is desirable that the guard robot should be small-sized and light-weighted to increase its portability. In addition, it should be able to overcome a relatively high obstacle to cope with different situations. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes the jumping mechanism based on the conical spring for a small robot. Both the clutch mechanism and conical spring are incorporated into the jumping mechanism. In the clutch mechanism, the spring can be immediately compressed and released by one actuator with the planetary gear train and one-way clutch. The robot equipped with the jumping mechanism can overcome the obstacles which are higher than its height. In this paper, the characteristic of the conical spring for the jumping robot is determined and the small-sized, lightweight jumping mechanism is developed. The validity of the jumping mechanism was verified by various experiments. It is shown that the robot using this mechanism can provide good mobility in the rough terrain.

  • PDF

A Study on the Lifetime Assessment of Bearings According to the Output Shaft Supporting Structures in Transmissions of a Tracked Vehicles (궤도차량 변속기 출력 축 지지구조에 따른 베어링 수명 영향 평가에 대한 연구)

  • Park, Jong-Won;Kim, Hyoung-Eui
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.331-342
    • /
    • 2011
  • The transmission of tracked vehicles performs complex functions as steering, shifting, braking, etc. and the system level life time has been a key influenced by the number of sub-parts like as gear assembly, torque converter, clutches, bearings and so on. In particular, the mechanical type steering system in tracked vehicle has impact shock torques in steering shift and those kind of shock torques can effect on the durability of many sub-parts in power train system. The field failure modes of gear assembly, steering assembly and the bearings of output shaft appear as a very complex phenomenon. In this study, the actual failure, which may occur in field, of the transmission was investigated comprehensively and that the endurance test on the resulting output shaft bearing failure analysis and life assessment was performed. Life time test method used in this study, developed for the purpose of the internal usage, and under these testing techniques the impact of the each bearing damage, which used in tracked vehicle transmission left / right outputs of different structures, was analyzed.

A Study on the Safety Evaluation of the Pitch Reducer for 8 MW Large Capacity Wind Turbines (8 MW급 대용량 풍력발전기용 피치감속기 안전성 평가에 관한 연구)

  • Seo-Won Jang;Se-Ho Park;Hyoung-Woo Lee
    • Journal of Wind Energy
    • /
    • v.13 no.4
    • /
    • pp.80-89
    • /
    • 2022
  • In this paper, a study was conducted to evaluate the safety of pitch reducers for 8 MW class wind turbines. The housing and carrier of the pitch reducer were subjected to structural analysis for the ultimate load by load duration distribution (LDD). As a result of the finite element analysis of the housing parts, the part with the highest stress was the output housing, and the equivalent stress was 522.4 MPa and the safety factor was 1.14. As a result of finite analysis of the carrier, the highest stress occurred at 80.5 MPa in the first carrier, and the safety factor was 10.3. In addition, extreme strength and life analysis by LDD load were performed for gears and bearings included in each stage. The strength analysis of the planetary gear train was conducted based on ISO 6336, and the stability evaluation of the bearings through life analysis based on ISO 281 found all to be safe.

A Study on the Vibration Characteristics of Pitch Gearbox for 8 MW Large Capacity Wind Turbines (8 MW급 대용량 풍력발전기용 피치 감속기 진동특성에 관한 연구)

  • Seo-Won Jang;Se-ho Park;Hyoung-Woo Lee
    • Journal of Wind Energy
    • /
    • v.13 no.4
    • /
    • pp.90-97
    • /
    • 2022
  • In this paper, a study on the vibration characteristics of the pitch gearbox of 8 MW large capacity wind turbines was conducted. The vibration analysis method of the pitch gearbox was proposed by combining the planetary gear train vibration model with the housing and carrier finite element model using the substructural synthesis method. We modeled the vibration excitation source for mass unbalance, gear mesh frequency, and bearing defect error action on the pitch gearbox, and performed a critical speed analysis. As a result of analyzing the critical speed of the pitch gearbox, the critical speed for the excitation source did not occur within the operation speed (84.87 rpm). In addition, as a result of applying 10 %, 20 %, …, 100 % of the largest load duration distribution (LDD) load, it was found that the bearing stiffness and the primary natural frequency were larger as the LDD load was larger. The primary natural frequency was 81.47 Hz for the lowest load among LDD data, which exceeded an operating speed of 84.87 rpm (5.09 Hz), so it was found that vibration caused by the change of LDD load did not occur in the operating speed range.