• Title/Summary/Keyword: Gear Rattle

Search Result 29, Processing Time 0.023 seconds

Analysis of Gear Rattle Using a Dynamic Load Model of Agricultural Tractor Driveline (동하중 모형을 이용한 트랙터 전동라인의 치타음 분석)

  • 류일훈;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.371-380
    • /
    • 2002
  • The objectives of this study were to analyze gear rattle in a power drive line using its dynamic model and to derive design guidelines to eliminate it. A 72 degrees of freedom model of power driveline of an agricultural tractor was developed and proved to be valid fer predicting the collision characteristics of gears in mesh, which may determine whether or not the gear rattle will occur. Using the model the effects on the rattle of drag torque, backlash, mass moment of inertia, transmitting torque were analyzed. Increasing drag torque or decreasing mass moment of inertia reduced gear rattle. The gears transmitting power do not develop rattles. It was also found that a large amount of rattle is likely to be developed by the change gears placed at the end of idle shafts. Increasing the drag torque to such change gears may be the most effective way of reducing the gear rattle in a tractor driveline.

Reduction of Rattle Noise in a Direct-Engine PTO Driveline Using an Anti-backlash Gear (안티-백래시 기어를 이용한 엔진 직결식 PTO 전동 라인의 치타음 감소)

  • Shim, Sung-Bo;Park, Young-Jun;Kim, Kyeong-Uk
    • Journal of Biosystems Engineering
    • /
    • v.32 no.3
    • /
    • pp.137-144
    • /
    • 2007
  • An anti-backlash gear was developed to reduce the rattle noise generated from the gearbox of a direct-engine PTO driveline of agricultural tractors under idling. A pair of gears using the anti-backlash gear as driven part was modeled and verified. Using the verified model, a computer simulation was conducted to investigate the effects of design parameters of the anti-backlash gear on the reduction of rattle noise. The optimum values of the design parameters were also determined by the computer simulation. The optimized anti-backlash gear was then manufactured and installed on the experimental PTO driveline for the performance test. Measurement of rattle noise was made to evaluate its performance before and after the driven gear of the PTO gearbox was replaced by the optimized anti-backlash gear. Results of the study were as follows: The optimum values of the design parameters, spring constant and deformation, may be determined by a relationship: $$k{\ge}\frac{4364.7}{150{\delta}-23.564}$$ The optimized anti-backlash gear reduced the rattle noise maximally by 16.9 dBA. This concluded that it would be most effective to use the optimized anti-backlash gear to eliminate the rattle noise in the PTO driveline.

A Study on the System Parameters to Reduce the Idle Gear Rattle (기어 래틀 저감을 위한 시스템 파라미터 연구)

  • 안병민;장일도;최은오;홍동표;정태진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.88-96
    • /
    • 1998
  • The rattle noise is the most significant in many kinds of manual gearbox nioses, which is generated at the idle stage of the engine operation. The main torsional vibrat- ion source of the driveline is the fluctuation of the engine torque. The gear rattle is impacts generating in the backlash of the free gear due to this torsional vibration. Many researchers reported the clutch torsional characteristic optimization method to reduce the idle gear rattle but only few of them give sufficient consideration to the system parameters like gear backlash, drag torque, system inertia, inertia distribution, engine torque fluctuation, idle engine rotation speed, and accessory load. In this paper, influence rate of system parameters on the gear rattle is presented and counterplans like backlash reduction, drag torque increase, inertia addition, inertia distribution modification and engine torque characteristic control are suggested.

  • PDF

Influence Rate Estimation of Gearpair on the Rattle Vibration and Counterplan Suggestion for Reduction of Gear Vibration (기어쌍의 래틀진동에 대한 영향도 평가 및 기어 진동 저감을 위한 대책 제시)

  • 안병민
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.29-36
    • /
    • 1998
  • In recent year, as the demand about low vibration and noise vehicle is increased constantly. automobile companies try to a lot of things to achieve this demand. Gear rattle vibration become an emergency problem to be cured at idling. There are two kinds method to reduce idle gear rattle vibration One is optimization of clutch damper design parameters(stiffness, hysteresis torque, preload, length of lst stage) the other is system parameters modification(inertia, drag torque, backlash, etc) But these methods are impossible to estimate influence rate of each gearpair on the idle gear rattle vibration. In this study, 14degrees of freedom nonlinear model is developed to analyze influnce rate of each gearpair on the idle gear rattle vibration and the counterplan to reduce the gear noise is suggeted through the shift system modification.

  • PDF

A Study on the Parameters Influence upon Automotive Neutral Gear Rattle (자동차 공회전시 기어 치타음에 영향을 미치는 파라미터에 관한 연구)

  • Hong, D.P.;Chung, T.J.;Ahn, B.M.;Jeon, B.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.74-83
    • /
    • 1997
  • The non-periodic angular accelerations of engine are the major cause of gear rattle. This gear rattle is based on the existence of a backlash between the drive gear of input shaft and the free gear of output shaft in the gearbox. Especially, the neutral gear rattle have a very bad effect on the ride quality. Test-rig was constructed in order to evaluate the parameter influence upon the neutral gear rattle. Also, each different 4 type torsional characteristic of clutch was manufactured. Experimental conditions are the use of each different 4 type torsional characteristic of clutch and oil temperature variation in gearbox. In case of the same stiffiness of pre-damper type clutch at idling, the clutch of large hysteresis showed dam- ping effects at the 2nd input gear and the 2nd output gear. Also, the main-damper type clutch was shown to large resonance phenomenon at the 2nd input gear. Accordingly, main-damper type clutch was unapp- roriate at idling.

  • PDF

Improvement of Gear Rattle Noise of a Small Car by Experimental Approach (시험적 방법에 의한 경승용차 기어 래틀 소음 개선)

  • 조영호;김인동;이병로;이학철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.628-632
    • /
    • 2001
  • Experimental approach was investigated to improve gear rattle noise of a small car. During the development of a small car serious problem occurred inside the transmission gear units. The transmission was a carried over system from a less powered predecessor. Several components of suspicion were investigated, and applied to reduce rattle noise. In general, backlash, the assembly gaps, and the clutch disk rattle induce gear rattle noise. Above mentioned improvements were applied to reduce the noise, but still problem remained. Meanwhile, the temperature inside the gearbox was reported to be unusually high and the life of transmission oil quality deteriorated drastically, Temperature increment caused the large gap between the bearing outer diameter and the transmission housing. Large gap made the gear shaft assembly move intermittently and impact each other. The tighter control of the assembly gap allowed the rotating shafts smoothly and reduced the gear rattle noise even in the high temperature range.

  • PDF

A Study on the Design Technique to Reduce the Rattle Vibration (래틀 진동을 위한 설계 기법 연구)

  • 안병민;장일도;홍동표;정태진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.562-566
    • /
    • 1997
  • The main torsional vibration source of the driveline is the fluctuation of the engine torque. The gear rattle is impacts generating in the backlash of the free gear due to this torsional vibration Optimization of the clutch torsional characteristic is one of the effective methods to reduce the idle gear rattle. Many researches have been reported on this problem but only few of them give sufficient consideration to the full clutch design parameters(stiffness, hysteresis torque, preload, first stage length) and drag torque This paper pays attention to the gear impact mechanism, clutch design parameters and drag torque to reduce the idle gear rattle with computer simulation.

  • PDF

An Experimental Study on Reduction of Gear Rattle Noise for a Mini-bus with Diesel Engine (디젤엔진을 탑재한 소형버스의 기어 래틀 소음 저감에 관한 실험적 연구)

  • Jung, Jong-An;Cho, Chan-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.13-21
    • /
    • 1995
  • On mini-bus with diesel engine, at idle rpm for taking measurement to reduce gear rattle noise, was tested by the three clutch disc samples by turns, then measured the fluctuation of revolution of engine & transmission and parallel vibration of differential gear & transmission. By analyzing the measured data, the gear rattle noise, the matching design and tuning technic of transmission are comprehended and established. Conclusions of this test are as follows ; (1) Fluctuation of revolution on transmission is greatly affected by torsion of clutch disc according to fluctuation of engine revolution transmit to transmission through clutch system. Especially, gear rattle noise can be reduced by minimaizing the fluctuation of the revolution of transmission using pre-damper type clutch disc. (2) The reason of gear rattle noise is higher in summer than winter and driving longer period than initial driving is due to affection by drag torque changing. So, it is necessary for manufacturer to choose proper oil to transmission. (3) It can be occurred jumping and crash noise by applying the pre-damper type clutch disc for reducing the gear rattle noise. So, it is necessary to do test with actual vehicle according to test procedure.

  • PDF

A Study for a Automotive Neutral Gear Rattle and the Clutch Torsional Characteristics (자동차 공회전시 기어래틀과 클러치 비틀림특성에 대한 연구)

  • Hong, D.P.;Chung, T.J.;Tae, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.30-41
    • /
    • 1995
  • Gear rattle is a source of vibration and noise in automotive gearbox casing and generally occurs at or near system resonant frequencies. The neutral gear rattle of the gearbox. is affected by the stiffness and hysteresis torque in the clutch disk and drag torque determining balancing point of the clutch disk operating range. The experiment is carried out in the pre-damper type clutch and a manual transmission of a automobile equipped for inline four-sylinder four-cycle 1.5L MPI engine and the computer simulation is executed by 5th order Runge-Kutta method. The results of the simulation analysis and experimental studies show the dynamic behavior of clutch and a phenomenon of the neutral gear rattle with respect to drag torque and torsional characteristics of the clutch.

  • PDF

A Study on the Parameters for Reduction of Transmission Vibration (변속기 진동 저감을 위한 파라미터 연구)

  • 안병민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.292-297
    • /
    • 1997
  • The rattle noise is the most significant in many kinds of manual gearbox noises, which is generated at the idle stage of the engine operation. The main torsional vibration source of the driveline is the fluctuation of the engine torque. The gear rattle is impacts generating in the backlash of the free gear due to this torsional vibration. Many researchers reported the clutch torsional characteristic optimization method to reduce the idle gear rattle but only few of them give sufficient consideration to the system parameters like gear backlash, drag torque, system inertia, inertia distribution, engine torque fluctuation, idle engine rotation speed, and accessory load. This paper pays attention to the gear impact mechanism and system design parameters to reduce the idle gear rattle with computer simulation.

  • PDF