• Title/Summary/Keyword: Gear Mechanism

Search Result 171, Processing Time 0.03 seconds

Twisted String-based Upper Limb Exoskeleton (줄꼬임에 기반한 상지 외골격 로봇)

  • Lee, Seung-Jun;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.960-966
    • /
    • 2016
  • This paper proposes a new concept of a soft and wearable upper-limb exoskeleton. A novel actuation principle, called the twisted string actuation principle, is implemented to make it lightweight, soft, and therefore easily wearable. Its power transmission mechanism and harness are designed to be soft and wearable, yet have enough control accuracy for rehabilitation. In addition to force transmission optimization, a speed enlargement mechanism is newly introduced in order to increase the contraction speed of the twisted string actuation mechanism by sacrificing the unnecessarily large gear reduction ratio of the twisted string mechanism. A prototype has been tested for mirroring therapy, and the feasibility of the proposed mechanism has been shown through a sufficiently accurate tracking performance.

Implementation of a New Parallel Spherical 3-Degree-of-Freedom Mechanism With Excellent Kinematic Characteristics (우수한 기구학 특성을 가지는 새로운 병렬형 구형 3자유도 메커니즘의 구현)

  • 이석희;김희국;오세민;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.299-303
    • /
    • 2004
  • In our pervious paper, a new parallel-type spherical 3-degree-of-freedom mechanism consisting of a two-degree-of-freedom parallel module and a serial RRR subchain was proposed[1]. In this paper, its improved version is suggested and implemented. Differently from the previous 3-dof spherical mechanism, gear chains are incorporated into the current version of the mechanism to drive the distal revolute joint of the serial subchain from the base of the mechanism and in fact, the modification significantly improves kinematic characteristics of the mechanism within its workspace. Firstly, after a brief description on its structure, the closed-form solutions of both the forward and the reverse position analysis are derived. Secondly, the first-order kinematic model of the mechanism for the inputs which are assumed to be located at the base is derived. Thirdly, through the simulations of the kinematic analysis via. kinematic isotropic index, it is confirmed that the mechanism has much more improved isotropic properties throughout the workspace of the mechanism than the previous mechanism in [1]. Lastly, the proposed mechanism is implemented to verify the results from this analysis.

  • PDF

Controller design of heavy load driving system (대부하 구동시스템의 제어기 설계)

  • 윤강섭;안태영;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.730-735
    • /
    • 1992
  • In this study, heavy loads driving servo control systems, which are composed of electro-hydraulic servo-valve, hydraulic motor/cylinder, gear box and link mechanism, are investigated for implemention. To predict the performances of the systems, modelling and simulation with some nonlinearities are carried out. Simulation results are compared with experimental results.

  • PDF

Non-linear Shimmy Analysis of a Nose Landing Gear with Friction (마찰을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.605-611
    • /
    • 2011
  • Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. It is caused by a couple of conditions such as a low torsional stiffness of the strut, a free-play in the landing gear, a wheel imbalance, or worn parts, and it may make the aircraft unstable. This study was performed for an analysis of the shimmy stability on a small aircraft. A nose landing gear was modeled as a linear system and characterized by state-equations which were used to analyze the stability both in the frequency and time-domain for predicting whether the shimmy occurs and investigating a good design range of the important parameters. The root-locus method and the 4th Runge-Kutta method were used for each analysis. Because the present system has a simple mechanism using a friction to reinforce the stability, the friction, a non-linear factor, was linearized by a describing function and considered in the analysis and observed the result of the instability reduction.

Development of Speed Limit Safety Wheel used by Trochoid Gear (트로코이드 기어를 이용한 속도제한 안전바퀴 개발)

  • Lee, Dongkeun;Lee, Siyoung;Hong, Youngjun;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1340-1345
    • /
    • 2012
  • Industrial products developed in recent years have focused on usability and stability. Especially, for the products used in daily life, steady efforts have been made to secure the safety. Among them, the products equipped with wheels such as strollers, shopping carts, and carriers can occur the safety accidents by unintended over speed at a ramp. Therefore, development of speed limit device is required to prevent such accidents. However, the existing speed limit devices are very expensive and have a complex drive principle, so it's generally difficult to apply them. In this study, a simple speed limit wheel is suggested which can replace the previous complex and inconvenient speed limit devices. The developed speed limit wheel can be simply applied to existing products by changing the wheels. In addition, it has an advantage to operate only by mechanical mechanism without power supply. Thus it can minimize the cost and waste of resources. For this purpose, the operating condition of the target products was analyzed, and trochoid gear mechanisms were selected for the speed limit. Based on this, finite element analysis was conducted to estimate the operating mechanism. After the prototype of the wheel was produced, the performance under various conditions was tested and has been improved.

Design and Performance Test of a Rotary Actuator for Side Tilting Excavator Bucket (좌우 틸팅이 가능한 굴삭기 버켓용 로터리 액츄에이터 설계 및 시험)

  • Park, Min Su;Lee, Jun Seok;Kim, Do Youp;Lee, Eung Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.47-51
    • /
    • 2017
  • Generally, a working excavator has only one directional bucket tilting angle, which is up-forward. However, side direction rotation of the bucket would allow variety of working output. We designed a hydraulic rotary actuator comprising a double rod hydraulic cylinder with a rack-pinion gear set for use in excavator bucket with side tilting mechanism, thus converting the linear to angular motion. The proposed side tilting rotary actuator was designed with parts suitable for medium size of heavy duty excavator. These mechanical parts were inexpensive to purchase and the manufacturing cost was reasonable. The proposed mechanism is potentially useful for excavator with variety of working output.

A Study on the Cutting Force of Side Milling Cutter and Whirling Tool in Worm Screw Machining (Worm 절삭 가공 시 Side Milling Cutter 와 Whirling Tool 의 절삭력에 관한 연구)

  • Gwon T.W.;Kim C.H.;Kang D.B.;Lee M.H.;Ahn J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1879-1882
    • /
    • 2005
  • Due to increase of demands on safety and convenience for automotive vehicle, the use of DC motor, such as power window, seat adjusting, pedal adjusting, sunroof, electric shift motor and so on, is increasing rapidly in the whole world. Worm gear is an important part to transmit torque to another gear in gear mechanism of automotive DC motor. But with current forming process, it has some problems in manufacturing and the quality. Also, the characteristics of automotive parts such as price and mass-production limit the quality improvement. Recently several methods are used in order to reduce a worm screw machining time and to maintain precision. In this paper, we introduce whirling tool machining and side milling cutter machining as effective manufacturing method of worm screw and study on the cutting force of side milling cutter and whirling tool in worm screw machining.

  • PDF

Basic Theory on a Multi-Mode CVT (다중모드 무단 변속기의 구조이론에 관한 연구)

  • Lee, Jin-Won;Jang, Uk-Jin;Park, Jin-Ho;Park, Yeong-Il;Lee, Jang-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2477-2486
    • /
    • 2000
  • A planetary gear assembly is a key component to combine and/or split a power from the source. With a planetary gear assembly, a continuously variable unit extends its capacity by means of power bra nching mechanism. Power branching with one planetary gear assembly and one continuously variable unit is categorized into 12 basic types. Each type represents peculiar power transmitting characteristics. Additionally, a multi-mode (range) continuously variable transmission can be designed with accompanying clutches. A multi-mode continuously variable transmission changes the path through which the source power is transmitted. Each path has its own features, such as high efficiency. In this paper, some design principles are examined such as, criteria to guarantee the minimum power efficiency, and constraints to guarantee the smooth mode shift after discussing well-known features of multi-mode M mathematically.

Performance Evaluation of Driver Supportive System with Haptic Cue Gear-shifting Function Considering Vehicle Model (차량모델을 고려한 햅틱 큐 기어변속보조 시스템의 성능평가)

  • Han, Young-Min;Sung, Rockhoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 2014
  • This paper proposes a driver supportive device with haptic cue function which can transmit optimal gear shifting timing to a driver without requiring the driver's visual attention. Its performance is evaluated under vehicle model considering automotive engine, transmission and vehicle body. In order to achieve this goal, a torque feedback device is devised and manufactured by adopting the MR (magnetorheological) fluid and clutch mechanism. The manufactured MR clutch is then integrated with the accelerator pedal to construct the proposed haptic cue device. A virtual vehicle emulating a four-cylinder four-stroke engine, manual transmission system of a passenger vehicle and vehicle body is constructed and communicated with the manufactured haptic cue device. Control performances including torque tracking and fuel efficiency are experimentally evaluated via a simple feed-forward control algorithm.

Vibration Evaluation of Concrete Mixer Reducer (콘크리트 믹서 감속기의 진동 평가)

  • Cho, Yonsang;Bae, MyoungHo
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.71-76
    • /
    • 2019
  • The differential planetary gear reducer as a main component of the concrete mixer driving mechanism requires a strong torque to mix concrete compounds. As this component is currently dependent on imports, it is necessary to develop it by conducting a study on vibration analysis and the resonance problem. The noise and vibration of a concrete mixer reducer increase owing to the transmission error of planetary gears, and the damage of components occurs owing to the problems in design and production. In this study, the tooth-passing frequency is calculated to evaluate the noise and vibration of a mixer reducer, and a fast Fourier transform (FFT) analysis is conducted through a vibration test using an acceleration sensor. The vibration of the reducer is measured at three points of input and output of the shaft and planetary gear housing with fixed and variable revolutions per minute. The operating conditions of gears and bearings are evaluated by performing the FFT analysis, and the resonance problem is verified. The results show that No. 1 pinion and ring gears revolve disproportionately. The amplitude values appear high, and the wear of tooth faces occur in tooth-passing frequencies and harmonic components of No. 1 and No. 2 pinion-ring gears. Therefore, we conclude that design changes in the reducer and a correction of tooth profiles are required.