• Title/Summary/Keyword: Gear Failure

Search Result 111, Processing Time 0.025 seconds

SHEAR BOND STRENGTH OF COMPOSITE RESIN TO ENAMEL FOLLOWING ENAMEL MICROABRASION (Enamel Microabrasion을 시행한 법랑질과 복합레진의 전단결합강도)

  • Hong, Kee-Sang;Lee, Sang-Dae;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.45-53
    • /
    • 2000
  • Enamel microabrasion is a means by which superficial enamel discoloration is removed using hydrochloric acid and fine pumice. As enamel microabrasion alone may not be sufficient in cases of deeper discoloration, composite resin restoration is recommended in areas where there is remaining discoloration. The purpose of this study was to investigate the effects of different methods and number of applications of enamel microabrasion on the shear bond strength of composite resin to enamel. Untreated control was designated as group 1. 5-second applications of a mixture of 18% HCl and fine pumice were performed 5 and 10 times on groups 2 and 3, respectively. A commercially available mixture of 10% HCl and abrasives(PREMA) was applied using a 10 : 1 gear reduction handpiece 5 and 10 times on groups 4 and 5, respectively, with each application lasting 20 seconds. After etching with 37% phosphoric acid, composite resin was bonded. Thermocycling was performed and shear bond strength was measured. The following results were obtained : 1. Group 2 showed the highest bond strength$(24.36{\pm}3.34)$, while group 3 showed the lowest$(19.35{\pm}3.43)$, Shear bond strength decreased in the following order: 2>4>5>1>3. 2. Group 2 showed bond strength significantly higher compared to groups 1 and 3(p<0.05). 3. There were no significant differences between groups 2 and 3, which had been microabraded using HCl and pumice, and groups 4 and 5, to which PREMA had been applied, when bond strengths were compared(p>0.05). 4. When modes of fracture were examined, adhesive failure was observed in groups 3 and 4, while cohesive failure was observed in groups 1, 2, 3 and 4. Only mixed failures were found group 5. 5. When viewed using a SEM, groups 2 and 3, which had been microabraded using HCl and pumice, showed surface appearances similar to that of enamel etched with phosphoric acid. Groups 4 and 5, treated with PREMA, exhibited a smooth surface similar to that of group 1. All oops showed similar, typical surface characteristics following phosphoric acid etching.

  • PDF

A Study of Accelerated Life Test Conditions for Yaw Drive of Wind Turbine (풍력 발전기용 요 드라이브의 가속수명시험 조건에 관한 연구)

  • Lee, Young-Bum;Kang, Bo-Sik
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.213-219
    • /
    • 2014
  • Wind turbine, which is attracting part of the renewable energy and is researching continuously, is going to be large size for high efficiency. There is a yaw system rotating the nacelle, weighted about 600 tons, to be perpendicular with the wind direction blowing in the large wind turbine. The wind turbine is focusing on the reliability improvement because working environment effect is bigger than any other points and specially, the reliability improvement of the yaw drive is required by the customer because it is the key component of the wind turbine. Because of this, the establishment of criteria for yaw drive is required because yaw drive system is the part of the wind turbine closely related with ensuring the reliability. So, this study did the failure analysis of the yaw drive system, which is consisted with 10 sets of yaw drives through researching and analyzing the site conditions. Also this study designed the life test method based on the failure analysis and working condition of the yaw drive. To design the accelerated life test of the yaw drive, this study reviewed the torque, lubrication condition, and frequency of use and etc. Finally, this selected the torque as the acceleration factor which is affected mainly to the system and also, the test equipment was developed based on the requirement of the life and performance test.

A Study on the Classification of Fault Motors using Sound Data (소리 데이터를 이용한 불량 모터 분류에 관한 연구)

  • Il-Sik, Chang;Gooman, Park
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.885-896
    • /
    • 2022
  • Motor failure in manufacturing plays an important role in future A/S and reliability. Motor failure is detected by measuring sound, current, and vibration. For the data used in this paper, the sound of the car's side mirror motor gear box was used. Motor sound consists of three classes. Sound data is input to the network model through a conversion process through MelSpectrogram. In this paper, various methods were applied, such as data augmentation to improve the performance of classifying fault motors and various methods according to class imbalance were applied resampling, reweighting adjustment, change of loss function and representation learning and classification into two stages. In addition, the curriculum learning method and self-space learning method were compared through a total of five network models such as Bidirectional LSTM Attention, Convolutional Recurrent Neural Network, Multi-Head Attention, Bidirectional Temporal Convolution Network, and Convolution Neural Network, and the optimal configuration was found for motor sound classification.

Rotor Dynamic Design of the Centrifugal Chiller Using Offset Bearing (Offset 베어링을 활용한 터보냉동기의 회전체동역학 설계)

  • Lee Chang-Joong;Park Yong Suk;Lee Joonkeun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.239-246
    • /
    • 2005
  • A rotor dynamic analysis is implemented to confirm the vibration stability of the high speed centrifugal chiller coupled with gear system. As the rotating speed of the centrifugal chiller under investigation is increased up to 17605rpm at the pinion rotating part, the bearing instability is getting higher and, furthermore, the rotor-bearing system might experience a few critical speed which lead to system failure due to the excessive vibration. In this study, considering the loading capacity and stability conditions, offset journal bearings are adopted for the pinion rotating system and general cylindrical bearings are used for motor part. From the modal analysis, the system is found to be stable as the critical damping ratio which shows the damping characteristics of the system are positive over all operating ranges, and in addition, the synchronous rotating frequency does not come across with any whirl natural frequency. From these results the authors confirm the vibration stability of the rotor-bearing system suggested in this study.

Rotor Dynamic Analysis of the High Speed Centrifugal Chiller (고속회전용 터보냉동기의 회전체 동역학 해석)

  • 이준근;박용석
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.193-198
    • /
    • 2003
  • A rotor dynamic analysis is implemented to confirm the vibration stability of the high speed centrifugal chiller coupled with gear system. As the rotating speed of the centrifugal chiller under investigated is increased up to 17,605 rpm at the pinion rotating part, the bearing instability is getting higher and, furthermore, the rotor-bearing system might experience a few critical speed which lead to system failure due to the excessive vibration. In this study, considering the loading capacity and stability conditions, offset journal bearings are adopted for the pinion rotating system and general cylindrical bearing are used for motor part. From the modal analysis, the system is found to be stable as the synchronous rotating frequency does not come across with any whirl natural frequency and, in addition, the critical damping ratio which shows the damping characteristics of the system are positive over the all operating ranges. From these results the authors confirm the vibration stability of the rotor-bearing system suggested in this study.

  • PDF

Application of Time-Frequency Analysis as a Tool for Noise Quality Control of DC Motor Systems (DC 모터계의 소음 품질관리를 위한 시간-주파수 분석의 적용)

  • 임상규;최창환
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.841-848
    • /
    • 1999
  • In the quality assurance check process of DC motor systems, even though the overall sound pressure level is acceptable, there is an incident that subjective evaluation leads to failure in product quality due to annoying noise. This kind of problem may be originated from the manufacturing or assembly process. In this paper, the transient spectral analysis, or the time-frequency analysis is applied to the noise quality problem. For the case study, the cause of annoying noise in the wind shield wiper motor is experimentally analyzed in detail. It is concluded that the defect in the shaft causes the impact noise which is not detectable by steady spectral analysis. Also demonstrated is how the time-frequency analysis is effectively applied to the annoying noise identification of the rotor-gear system.

  • PDF

An Investigation on the Lateral Vibration of General Rotors Considering Additional Effects (부수적인 영향 을 고려한 일반적인 회전축 의 횡진동 에 관한 연구)

  • 한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.81-90
    • /
    • 1985
  • For the prediction of the real vibration and stability behaviour of rotor-beaing systems, various additional effects were considered, which are simplified or neglected by conventional modeling of real rotors. These are specially coupled spring and damping coefficients of journal bearings, spring and damping coefficients of external supporting elements for bearings, static load exerting on gears or pulleys by power transmissions, excitation through the gear tolerance or failure, and positive or negative spring and damping characteristics of magnetic or sealing friction force. Considering these effects, a computer program for the calculation of free and forced vibration of rotating shafts supported by two or more bearings is developed, based on the transfer matrixed method. The reliability of the calculated resutls were ascertianed by comparing with the measured data on high speed rotors supported by two journal bearings.

Effects of Misalignment of High Speed Flexible Coupling on the Fighter Aircraft Transmission Characteristics

  • Samikkanu, Nagesh;Basha, Abu Muhammed Junaid
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.2
    • /
    • pp.91-99
    • /
    • 2012
  • The Fighter aircraft transmission system consists of a light weight, High Speed Flexible Coupling (HSFC) known as Power Take-Off shaft (PTO) for connecting Engine gearbox (EGB) with Accessory Gear Box (AGB). The HSFC transmits the power through series of specially contoured metallic annular thin flexible plates whose planes are normal to the torque axis. The HSFC operates at high speed ranging from 10,000 to 18,000 rpm. The HSFC is also catered for accommodating larger lateral and axial misalignment resulting from differential thermal expansion of the aircraft engine and mounting arrangement. The contoured titanium alloy flexible plates are designed with a thin cross sectional profile to accommodate axial and parallel misalignment by the elastic material flexure. This paper investigates the effect of misalignment on the transmission characteristics of the HSFC couplings. A mathematical model for the HSFC coupling with misalignment has been developed for analyzing the torque transmission and force interaction characteristics. An extensive testing has been conducted for validating characteristics of the designed coupling under various misalignment conditions. With this the suitability of the model adapted for the design iteration of HSFC development is validated. This method will reduce the design iteration cycles of HSFC and can be extended for the similar development of flexible couplings.

A Study on Components Load of 5MW Wind Turbine Pitch Drive (5MW 풍력용 Pitch Drive 구성품의 부하에 관한 연구)

  • Kim, Dong-Young;Lee, In-Bum;Liang, Long-Jun;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.115-120
    • /
    • 2014
  • Wind power is a type of clean energy source which does not produce carbon dioxide. The wind turbine industry is considered as a major growth industry in many countries. The main cause of wind turbine failure arises in the wind turbine gearbox, and the main type of damage occurs in the bearings and gears. Therefore, predictions of gear and bearing damage are very important to ensure the reliability of the wind turbine reducers used in these systems. In this research, in order to optimize the wind turbine reducer, a series of simulations and redesigns was done using the tool RomaxDesigner. The RomaxDesigner model was used to analyze the bearing life of the duty cycle for a 5 MW wind-turbine pitch drive and to calculate the load in operating states. The reducer was designed to satisfy the life requirement by analyzing bearing damage and calculating the stress values of the main parts of the reducer.

A Study on the Clamping Force Estimation and Failsafe Control Algorithm Design of the Electronic Wedge Brake System (Electronic Wedge Brake 시스템의 클램핑력 추정 및 Failsafe 제어 알고리즘 설계에 관한 연구)

  • Chung, Seunghwan;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • The EWB(electronic wedge brake) is one in which the braking force is developed in a wedge and caliper system and applied to a disk and wedge mechanism. The advantage of the wedge structure is that it produces self-reinforcing effect and hence, utilizes minimal motor power, resulting in reduced gear and current. The extent of use of clamping force sensors and protection from failure of the EWB system directly depends on the level of vehicle mass production. This study investigated the mathematical equations, simulation modeling, and failsafe control algorithm for the clamping force sensor of the EWB and validated the simulations. As this EWB system modeling can be applied to motor inductance, resistance, screw inertia, stiffness, and wedge mass and angle, this study could improve the accuracy of simulation of the EWB. The simulation results demonstrated the braking force, motor speed, and current of the EWB system when the driver desired to the step and pulse the brake force inputs. Moreover, this paper demonstrated that the proposed failsafe control algorithm accurately detects faults in the clamping force sensor, if any.