• Title/Summary/Keyword: Geant4 simulation

Search Result 129, Processing Time 0.024 seconds

A Comparative Study on the Dose of GEANT4-DICOM to TPS for High-Energy Radiation Treatment (고 에너지 방사선치료 시 GEANT4-DICOM과 TPS간 선량비교 연구)

  • Kwak, Keun-Tak;Kim, Yang-Soo;Kwon, Hyoung-Cheol;Kim, Jung-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.567-572
    • /
    • 2018
  • Radiation therapy is one of the beneficial choices in the treatment of cancer. This is a comparison of TPS(Treatment Planning System) and GEANT4-DICOM, which should be preceded by the best radiation therapy. A treatment plan for prostate cancer was established with Eclipse and the point doses 366.1 cGy, 189.1 cGy, 213.4 cGy, 127 cGy, 105.7 cGy of any five prostate, bladder, rectum, right femoral head and left femoral head were identified. GEANT4-DICOM simulation showed that the results of Eclipse and ${\pm}2%$ dose error were confirmed. The monthly X-ray output agreement management value recommended by TG-142 is ${\pm}2%$, which means that the experimental results can be meaningful. In conclusion, GEANT4-DICOM is an infinite way to obtain more extended dose information once the time constraints are overcome in the simulation.

Development of a Proton Computed Tomography System with Monte Carlo Simulation (양성자 전산화 단층 촬영 장치 개발에 관한 전산모사 연구)

  • Seo, Jeong-Min;Kim, Chan-Hyeong
    • Journal of radiological science and technology
    • /
    • v.34 no.3
    • /
    • pp.215-219
    • /
    • 2011
  • Monte Carlo simulation was performed to investigate optimal system of proton computed tomography and to avoid the errors by using data from X ray computed tomography in proton therapy. The informations from two DSSDs to measure position and LYSO scintillation detector to measure the residual energy of proton particle in GEANT4 were used for reconstruction computed tomography.

A Monte Carlo Simulation Study of a Therapeutic Proton Beam Delivery System Using the Geant4 Code (Geant4 몬테카를로 코드를 이용한 양성자 치료기 노즐의 전산모사)

  • Shin, Jungwook;Shim, Hyunha;Kwak, Jungwon;Kim, Dongwook;Park, Sungyong;Cho, Kwan Ho;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.226-232
    • /
    • 2007
  • We studied a Monte Carlo simulation of the proton beam delivery system at the National Cancer Center (NCC) using the Geant4 Monte Carlo toolkit and tested its feasibility as a dose verification framework. The Monte Carlo technique for dose calculation methodology has been recognized as the most accurate way for understanding the dose distribution in given materials. In order to take advantage of this methodology for application to external-beam radiotherapy, a precise modeling of the nozzle elements along with the beam delivery path and correct initial beam characteristics are mandatory. Among three different treatment modes, double/single-scattering, uniform scanning and pencil beam scanning, we have modeled and simulated the double-scattering mode for the nozzle elements, including all components and varying the time and space with the Geant4.8.2 Monte Carlo code. We have obtained simulation data that showed an excellent correlation to the measured dose distributions at a specific treatment depth. We successfully set up the Monte Carlo simulation platform for the NCC proton therapy facility. It can be adapted to the precise dosimetry for therapeutic proton beam use at the NCC. Additional Monte Carlo work for the full proton beam energy range can be performed.

  • PDF

[ $^{99m}Tc$ ] Generator Safety Simulation Based on GEANT4 (GEANT4를 이용한 $^{99m}Tc$ Generator 안전성 시뮬레이션)

  • Kang, Sang-Koo;Han, Dong-Hyun;Kim, Chong-Yeal
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Technisium $(^{99m}Tc)$ is one of the most widely used radioactive isotopes for diagnosis in nuclear medicine. In general, technisium is produced inside the so called $^{99m}Tc$ generator which is usually made out of lead to shield relatively high energy radiation from $^{99}Mo$ and its daughter nuclide $^{99m}Tc$. In this paper, a GEANT4 simulation is carried out to test the safety of the $^{99m}Tc$ generator, taking the Daiichi product with radioactivity of 500 mCi as an example. According to the domestic regulation on radiation safety, the dose at 10 cm and 100 cm away from the surface of shielding container should not exceed 2.0 mSv/h and 0.02 mSv/h, respectively. The simulated dose turned out to be less than the limit, satisfying the domestic regulation.

  • PDF

Finger Doses Received during $^{99m}Tc$ Injections Calculated with GEANT4 (GEANT4를 이용한 $^{99m}Tc$ 주입시 손가락 선량계산)

  • Han, Dong-Hyun;Kang, Sang-Koo;Kim, Chong-Yeal
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • To estimate the finger dose absorbed by $^{99m}Tc$ injection, simulations are carried out to calculate the dose equivalent of each finger per second with radioactivity of 370 MBq, based on the GEANT4 simulator. For the $^{99m}Tc$ source of the volume of 0.4mL and the radioactivity of 370 MBq, we obtained the dose equivalent of the right thumb ($0.29\;{\mu}Sv{\cdot}sec^{-1}$), the right index finger ($1.19\;{\mu}Sv{\cdot}sec^{-1}$), the right middle finger ($1.07\;{\mu}Sv{\cdot}sec^{-1}$), the left thumb ($4.36\;{\mu}Sv{\cdot}sec^{-1}$), and the left index finger ($3.37\;{\mu}Sv{\cdot}sec^{-1}$), respectively. This simulation results may serve as a useful data in the prediction of finger dose absorbed by $^{99m}Tc$ injection.

Calculation of Dose Distribution for SBRT Patient Using Geant4 Simulation Code (Geant4 전산모사 코드를 이용한 SBRT 환자의 선량분포 계산)

  • Kang, Jeongku;Lee, Jeongok;Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.36-41
    • /
    • 2015
  • The Monte Carlo based dose calculation program for stereotactic body radiotherapy was developed in this study. The Geant4 toolkit widely used in the radiotherapy was used for this study. The photon energy spectrum of the medical linac studied in the previous research was applied for the patient dose calculations. The geometry of the radiation fields defined by multi-leaf collimators were taken into account in the PrimaryGeneratorAction class of the Geant4 code. The total of 8 fields were demonstrated in the patient dose calculations, where rotation matrix as a function of gantry angle was used for the determination of the source positions. The DicomHandler class converted the binary file format of the DICOM data containing the matrix number, pixel size, endian type, HU number, bit size, padding value and high bits order to the ASCII file format. The patient phantom was constructed using the converted ASCII file. The EGSnrc code was used to compare the calculation efficiency of the material data.

Determination of Tungsten Target Parameters for Transmission X-ray Tube: A Simulation Study Using Geant4

  • Nasseri, Mohammad M.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.795-798
    • /
    • 2016
  • Transmission X-ray tubes based on carbon nanotube have attracted significant attention recently. In most of these tubes, tungsten is used as the target material. In this article, the well-known simulator Geant4 was used to obtain some of the tungsten target parameters. The optimal thickness for maximum production of usable X-rays when the target is exposed to electron beams of different energies was obtained. The linear variation of optimal thickness of the target for different electron energies was also obtained. The data obtained in this study can be used to design X-ray tubes. A beryllium window was considered for the X-ray tube. The X-ray energy spectra at the moment of production and after passing through the target and window for different electron energies in the 30-110 keV range were also obtained. The results obtained show that with a specific thickness, the target material itself can act as filter, which enables generation of X-rays with a limited energy.