• Title/Summary/Keyword: Ge doped

Search Result 176, Processing Time 0.041 seconds

Electrical Characteristics of $\delta$-doped SiGe p-channel MESFET ($\delta$ 도핑된 SiGe p-채널 MESFET의 특성 분석)

  • 이관흠;이찬호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.541-544
    • /
    • 1998
  • A SiGe p-channel MESFET using $\delta-doped$ layers is designed and the considerable enhancement of the current driving capability of the device is observed from the result of simulation. The channel consists of double $\delta-doped$ layers separated by a low-doped spacer which consists of Si and SiGe. A quantum well is formed in the valence band of the Si/SiGe heterojunction and much more holes are accumulated in the SiGe spacer than those in the Si spacer. The saturation current is enhanced by the contribution of the holes inthe spacer. Among the design parameters that affect the performance of the device, the thickness of the SiGe layer and the Ge composition are studied. The thickness of $0~300\AA$ and the Ge composition of 0~30% are investigated, and the saturation current is observed to be increased by 45% compared with a double $\delta-doped$ Si p-channel MESFET.

  • PDF

The Thermoelectric Properties of p-type SiGe Alloys Prepared by RF Induction Furnace (고주파 진공유도로로 제작한 p형 SiGe 합금의 열전변환물성)

  • 이용주;배철훈
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.432-437
    • /
    • 2000
  • Thermoelectric properties of p-type SiGe alloys prepared by a RF inductive furnace were investigated. Non-doped Si80Ge20 alloys were fabricated by control of the quantity of volatile Ge. The carrier of p-type SiGe alloy was controlled by B-doping. B doped p-type SiGe alloys were synthesized by melting the mixture of Ge and Si containing B. The effects of sintering/annealing conditions and compaction pressure on thermoelectric properties (electrical conductivity and Seebeck coefficient) were investigated. For nondoped SiGe alloys, electrical conductivity increased with increasing temperatures and Seebeck coefficient was measured negative showing a typical n-type semiconductivity. On the other hand, B-doped SiGe alloys exhibited positive Seebeck coefficient and their electrical conductivity decreased with increasing temperatures. Thermoelectric properties were more sensitive to compaction pressure than annealing time. The highest power factor obtained in this work was 8.89${\times}$10-6J/cm$.$K2$.$s for 1 at% B-doped SiGe alloy.

  • PDF

Excimer Laser-Assisted In Situ Phosphorus Doped $Si_{(1-x)}Ge_x$ Epilayer Activation

  • Bae, Ji-Cheul;Lee, Young-Jae
    • ETRI Journal
    • /
    • v.25 no.4
    • /
    • pp.247-252
    • /
    • 2003
  • This paper presents results from experiments on laser-annealed SiGe-selective epitaxial growth (LA-SiGe-SEG). The SiGe-SEG technology is attractive for devices that require a low band gap and high mobility. However, it is difficult to make such devices because the SiGe and the highly doped region in the SiGe layer limit the thermal budget. This results in leakage and transient enhanced diffusion. To solve these problems, we grew in situ doped SiGe SEG film and annealed it on an XMR5121 high power XeCl excimer laser system. We successfully demonstrated this LA-SiGe-SEG technique with highly doped Ge and an ultra shallow junction on p-type Si (100). Analyzing the doping profiles of phosphorus, Ge compositions, surface morphology, and electric characteristics, we confirmed that the LA-SiGe-SEG technology is suitable for fabricating high-speed, low-power devices.

  • PDF

An evaluation on crystallization speed of N doped $Ge_2Sb_2Te_5$ thin films by nano-pulse illumination (나노-펄스 노출에 따른 질소 첨가한 $Ge_2Sb_2Te_5$ 박막의 결정화 속도 평가)

  • Song, Ki-Ho;Beak, Seung-Cheol;Park, Heung-Su;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.134-134
    • /
    • 2009
  • In this work, we report that crystallization speed as well as the electrical and optical properties about the N-doped $Ge_2Sb_2Te_5$ thin films. The 200-nm-thick N-doped $Ge_2Sb_2Te_5$ thin film was deposited on p-type (100) Si and glass substrate by RF reactive sputtering at room temperature. The amorphous-to-crystalline phase transformation of N-doped $Ge_2Sb_2Te_5$ thin films investigated by X-ray diffraction (XRD). Changes in the optical transmittance of as-deposited and annealed films were measured using a UV-VIS-IR spectrophotometer and four-point probe was used to measure the sheet resistance of N-doped $Ge_2Sb_2Te_5$ thin films annealed at different temperature. In addition, the surface morphology and roughness of the films were observed by Atomic Force Microscope (AFM). The crystalline speed of amorphous N-doped $Ge_2Sb_2Te_5$ films were measured by using nano-pulse scanner with 658 nm laser diode (power : 1~17 mW, pulse duration: 10~460 ns). It was found that the crystalline speed of thin films are decreased by adding N and the crystalline temperature is higher. This means that N-dopant in $Ge_2Sb_2Te_5$ thin film plays a role to suppress amorphous-to-crystalline phase transformation.

  • PDF

Nitrogen을 도핑시킨 Ge-Sb-Te 박막의 광전자 및 광흡수 분광학 연구

  • Sin, Hyeon-Jun;Jeong, Min-Cheol;Kim, Min-Gyu;Lee, Yeong-Mi;Kim, Gi-Hong;Jeong, Jae-Gwan;Song, Se-An;Sun, Zhimei
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.186-186
    • /
    • 2013
  • Nitrogen doped Ge-Sb-Te (N-GST) thin films for phase change random access memory (PRAM) applications were investigated by synchrotron-radiation-based x-ray photoelectron spectroscopy and absorption spectroscopy. Nitrogen doping in GST resulted in more favorable N atoms' bonding with Ge atoms rather than with Sb and Te atoms [1,2], which explains the higher phase change transition temperature than that of undoped Ge-Sb-Te thin film. Surprisingly, it was noticed that N atoms also existed in the form of molecular nitrogen, $N_2$, which is detrimental to the stability of the GST performance [3]. N-doped GST experimental features were also supported by ab-initio molecular dynamic calculations [2]. References [1] M.-C. Jung, Y. M. Lee, H.-D. Kim, M. G. Kim, and H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, "Ge nitride formation in N-doped amorphous Ge2Sb2Te5", Appl. Phys. Lett. 91, 083514 (2007). [2] Zhimei Sun, Jian Zhou, Hyun-Joon Shin, Andreas Blomqvist, and Rajeev Ahuja, "Stable nitride complex and molecular nitrogen in N doped amorphous Ge2Sb2Te5", Appl. Phys. Lett. 93, 241908 (2008). [3] Kihong Kim, Ju-Chul Park, Jae-Gwan Chung, and Se Ahn Song, Min-Cherl Jung, Young Mi Lee, Hyun-Joon Shin, Bongjin Kuh, Yongho Ha, Jin-Seo Noh, "Observation of molecular nitrogen in N-doped Ge2Sb2Te5", Appl. Phys. Lett. 89, 243520 (2006).

  • PDF

A Study of Phase-change Properties of Sb-doped Ag/Ge-Se-Te thin films (Sb-doped Ag/Ge-Se-Te 박막의 상변화 특성 연구)

  • Nam, Ki-Hyun;Jeong, Won-Kook;Park, Ju-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.347-347
    • /
    • 2010
  • In other to progress better crystallization transition and long phase-transformation data of phase-change memory (PRAM), we investigated about the effect of Sb doping and Ag ions percolating into Ge-Se-Te phase-change material. Doped Sb concentrations was determined each of 10 wt%, 20 wt% and 30 wt%. As the Sb-doping concentration was increased, the resistivity decreased and the crystallization temperature increased. Ionization of Ag was progressed by DPSS laser (532 nm) for 1 hour. The resistivity was more decreased and the crystallization temperature was more increased in case of adding Ag layer under Sb-(Ge-Se-Te) thin film. At the every condition of thin films included Ag layer more stable states were indicated compare with just Sb-doped Ge-Se-Te thin films.

  • PDF

Enhancement of Saturation Current of a p-channel MESFET using SiGe and $\delta$-dopend Layers ($\delta$도핑과 SiGe을 이용한 p 채널 MESFET의 포화 전류 증가)

  • 이찬호;김동명
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.86-92
    • /
    • 1999
  • A SiGe p-channel MESFET using $\delta$-doped layers is designed and the considerabel enhancement of the current driving capability of the device is observed from the result of simulation. The channel consists of double $\delta$-doped layers separated by a low-doped spacer which consists of Si and SiGe. A quantum well is formed in the valence band of the Si/SiGe heterojunction and much more holes are accumulated in the SiGe spacer than those in the Si spacer. The saturation current is enhanced by the contribution of the holes in the spacer. Among the design parameters that affect the performance of the device, the thickness of the SiGe layer and the Ge composition are studied. The thickness of 0~300$\AA$ and the Ge composition of 0~30% are investigated, and saturation current is observed to be increased by 45% compared with a double $\delta$-doped Si p-channel MESFET.

  • PDF

Carbon이 첨가된 Ge-doped SbTe 상변화재료의 박막 및 소자 특성

  • An, Hyeong-U;Park, Yeong-Uk;O, Cheol;Jang, Gang;Jeong, Jeung-Hyeon;Lee, Su-Yeon;Jeong, Du-Seok;Kim, Dong-Hwan;Jeong, Byeong-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.55-55
    • /
    • 2011
  • 질소 등을 GST225 상변화재료에 첨가시켜 비저항을 증가시킴으로서 PCRAM의 동작 전류를 감소시킨 연구가 선행된 바 있다. 본 연구에서는 GST225와 달리 고속 동작 특성을 갖는 것으로 널리 알려진 Ge-doped SbTe (GeST) 상변화 재료에 Carbon을 첨가하여 박막 특성을 연구하여 동작 전류 감소의 가능성을 타진하였다. 실험을 위한 박막 제작을 위해 2 inch size의 GeST 및 C doped GeST (C-GeST) single target을 이용하여 RF magnetron co-sputtering 하였다. 박막은 carbon이 첨가되지 않은 GeST와 carbon 첨가량이 늘어나는 순서로 C-GeST 1, C-GeST 2, C-GeST 3로 구성된다. 이 때 제작한 박막의 composition analysis를 위해 XRF/RBS/AES가 사용되었고 제작된 박막의 기본적인 특성평가를 위해 resistivity(${\rho}$)와 crystallzation temp.(Cx), surface morphology(AFM), x-ray diffraction pattern(XRD)를 측정하였다. 실험결과 GeST, C-GeST 1, C-GeST 2, C-GeST 3 박막의 Cx는 각각 209, 225, 233, $245^{\circ}C$로 측정되어 carbon 첨가량이 증가됨에 따라 결정화 온도가 증가되는 것을 알 수 있었다. 또한 ${\rho}$도 마찬가지로 annealing 온도를 약 $320^{\circ}C$로 할 경우 ${\rho}$(as-dep)와 ${\rho}$(crystalline) 모두 0.03 / $2.61*10^{-6}$, 0.08 / $7.93*10^{-6}$, 0.09 / $11.99*10^{-6}$, 0.13 / $13.49*10^{-6}{\Omega}{\cdot}m$로 증가하였다. 증가된 ${\rho}$의 원인이 박막의 grain size의 감소라고 단언 할 수는 없으나 AFM 측정결과 grain이라고 추측되는 박막 feature들의 size가 점차 감소하는 것을 확인하였다.

  • PDF

THERMOLUMINESCENCE DOSIMETRIC PROPERTIES OF Ge- AND Er-DOPED OPTICAL FIBRES AND THEIR APPLICATION IN THE MEASUREMENT OF DEPTH -DOSE IN SOLID WATER PHANTHOM

  • Amin, Y.M.;Abdulla, Y.A.;Khoo, B.H.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.143-147
    • /
    • 2001
  • The dosimetric properties of Ge- and Er-doped optical fibres are studied. The Ge-doped fibre is found to be more sensitive to radiation and there is little fading of TL signal compared with Er-doped fibre. The Ge- and Er-doped fibres showed a linear response over a range of ${\sim}1\;Gy$ to about 120 Gy and ${\sim}1Gy$ to about 250Gy respectively. The Ge-doped fibre is found to be dose-rate independent both for photons and electron beams of energy ranging from 6 to 10 MeV and 6 to 12 MeV respectively. The fibre is energy independent for energy greater than ${\sim}0.1\;MeV$ for photon or 0.1 MeV for electron beam. From the depth-dose measurement, it was found that the position of maximum dose, dmax, increased with increasing energy ranging from ${\sim}2\;cm$ and ${\sim}2.5\;cm$ for 6 MeV and 10 MeV photons respectively. The central axis percentage depth dose at 10 cm depth was found to be in good agreement with the value obtained using ionization chamber.

  • PDF

Properties of Ge,Ga and Ga-doped ZnO thin films prepared by RF magnetron sputtering (RF magnetron sputtering으로 생성한 Ga,Ge와 Ga이 도핑된 ZnO 박막의 특성)

  • Jung, Il-Hyun;Kim, Yu-Jin;Park, Jung-Yoon;Lee, Ru-Da
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.41-45
    • /
    • 2010
  • The ZnO thin films doped with Ga(GZO) and both Ga and Ge(GZO:Ge) were deposited on glass substrate by using RF sputtering system respectively. Structural, morphological and optical properties of the films deposited in the same condition were investigated. Structural properties of the films were investigated by Field Emission Scanning Electron Microscopy, FE-SEM images and X-ray diffraction, XRD analysis. These studies showed shape of films' surface and direction of film growth respectively. It's showed that all films were deposited by vertical orientation strongly. It can be confirmed that all dopants of targets were included in deposited films by results of EDX analysis. UV-Vis spectrometer results showed that all samples had highly transparent characteristics in visible region and have similar 3.28~3.31 eV band gap. It was found that existence of all dopants by EDX analysis. Morphology and roughness of surface of each film were clearly shown by Atomic Force Microscopy, AFM images. It was found in this research that film doped with Ge more dense and stable with hardly any difference in gap energy compared to ZnO films.