• Title/Summary/Keyword: Ge channel

Search Result 92, Processing Time 0.024 seconds

A Study on the Ohmic Contacts and Etching Processes for the Fabrication of GaSb-based p-channel HEMT on Si Substrate (Si 기판 GaSb 기반 p-채널 HEMT 제작을 위한 오믹 접촉 및 식각 공정에 관한 연구)

  • Yoon, Dae-Keun;Yun, Jong-Won;Ko, Kwang-Man;Oh, Jae-Eung;Rieh, Jae-Sung
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.23-27
    • /
    • 2009
  • Ohmic contact formation and etching processes for the fabrication of MBE (molecular beam epitaxy) grown GaSb-based p-channel HEMT devices on Si substrate have been studied. Firstly, mesa etching process was established for device isolation, based on both HF-based wet etching and ICP-based dry etching. Ohmic contact process for the source and drain formation was also studied based on Ge/Au/Ni/Au metal stack, which resulted in a contact resistance as low as $0.683\;{\Omega}mm$ with RTA at $320^{\circ}C$ for 60s. Finally, for gate formation of HEMT device, gate recess process was studied based on AZ300 developer and citric acid-based wet etching, in which the latter turned out to have high etching selectivity between GaSb and AlGaSb layers that were used as the cap and the barrier of the device, respectively.

  • PDF

Dependency of Phonon-limited Electron Mobility on Si Thickness in Strained SGOI (Silicon Germanium on Insulator) n-MOSFET (Strained SGOI n-MOSFET에서의 phonon-limited전자이동도의 Si두께 의존성)

  • Shim Tae-Hun;Park Jea-Gun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.9-18
    • /
    • 2005
  • To make high-performance, low-power transistors beyond the technology node of 60 nm complementary metal-oxide-semiconductor field-effect transistors(C-MOSFETs) possible, the effect of electron mobility of the thickness of strained Si grown on a relaxed SiGe/SiO2/Si was investigated from the viewpoint of mobility enhancement via two approaches. First the parameters for the inter-valley phonon scattering model were optimized. Second, theoretical calculation of the electronic states of the two-fold and four-fold valleys in the strained Si inversion layer were performed, including such characteristics as the energy band diagrams, electron populations, electron concentrations, phonon scattering rate, and phonon-limited electron mobility. The electron mobility in an silicon germanium on insulator(SGOI) n-MOSFET was observed to be about 1.5 to 1.7 times higher than that of a conventional silicon on insulator(SOI) n-MOSFET over the whole range of Si thickness in the SOI structure. This trend was good consistent with our experimental results. In Particular, it was observed that when the strained Si thickness was decreased below 10 nm, the phonon-limited electron mobility in an SGOI n-MOSFT with a Si channel thickness of less than 6 nm differed significantly from that of the conventional SOI n-MOSFET. It can be attributed this difference that some electrons in the strained SGOI n-MOSFET inversion layer tunnelled into the SiGe layer, whereas carrier confinement occurred in the conventional SOI n-MOSFET. In addition, we confirmed that in the Si thickness range of from 10 nm to 3 nm the Phonon-limited electron mobility in an SGOI n-MOSFET was governed by the inter-valley Phonon scattering rate. This result indicates that a fully depleted C-MOSFET with a channel length of less than 15 m should be fabricated on an strained Si SGOI structure in order to obtain a higher drain current.

Design and performance evaluation of WDMA protocols for high-speed optical network (수동 성형 구조의 고속 광통신망을 위한 WDMA 프로토콜 및 성능평가에 관한 연구)

  • 이호숙;최형윤;이남준;박성우;김영천
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.59-68
    • /
    • 1996
  • In this paper, we propose two types of WDMA protocol for multi-wavelength optical networks that have a dedicated control channel. Protocol type I is designed for the case that the number of nimislots is less than the number of nodes (La${\ge}$M). Proposed protocols employ the aging scheme to guarantee a fairness in the process of channel allocation. The perfomrance of proposed protocols are evaluated in terms of throughput and delay with variations in offered load. Simulation results show that the proposed protocols have superior performance to conventional protocols.

  • PDF

Energy Efficiency Modelling and Analyzing Based on Multi-cell and Multi-antenna Cellular Networks

  • Ge, Xiaohu;Cao, Chengqian;Jo, Min-Ho;Chen, Min;Hu, Jinzhong;Humar, Iztok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.560-574
    • /
    • 2010
  • In this paper, the relationship between the energy efficiency and spectrum efficiency in a two-cell cellular network is obtained, and the impact of multi-antenna on the energy efficiency of cellular network is analyzed and modeled based on two-state Markovian wireless channels. Then, the energy efficiency of multi-cell cellular networks with co-channel interference is investigated. Simulation results verify the proposed model and the energy-spectrum efficiency tradeoffs in cellular networks with multi-antenna and co-channel interference.

Ab Initio Study of Mechanism of Forming Germanic Bis-Heterocyclic Compound between Dimethyl-Germylene Carbene (Me2Ge=C:) and Acetone

  • Lu, Xiuhui;Che, Xin;Lian, Zhenxia;Li, Yongqing
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.89-94
    • /
    • 2011
  • The mechanism of the cycloaddition reaction of forming germanic bis-heterocyclic compound between singlet dimethylgermylene carbene and acetone has been investigated with CCSD(T)//B3LYP/6-$31G^*$ method. From the potential energy profile, it can be predicted that, this reaction has one dominant channel. The presented rule of this dominant channel is that the two reactants firstly form a four-membered ring carbene (RC4) through the [2+2] cycloaddition reaction. Due to $sp^2$ hybridization of carbene C atom in RC4, RC4 further combines with acetone to form a reactant complexe (RC5). Due to the further $sp^3$ hybridization of carbene C atom in RC4, RC5 isomerizes to a germanic bisheterocyclic compound (P6) via the transition state (TS5).

Finite element analysis of the fluid-structure interaction in a compliant vessel (유연 혈관에서 유체-고체 상호작용에 대한 유한요소 해석)

  • Shim, Eun-Bo;Ko, Hyung-Jong;Kamm, Roger D.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.591-596
    • /
    • 2000
  • Flow through compliant tubes with linear taper in wall thickness is numerically simulated by finite element analysis. Two models are examined: a planar two-dimensional channel, and an axisymmetric tube. For verification of the numerical method, flow through a compliant stenotic vessel is simulated and compared to existing experimental data. Computational results for an axisymmetric tube show that as cross-sectional area falls with a reduction in downstream pressure, flow rate increases and reaches a maximum when the speed index (mean velocity divided by wave speed) is near unity at the point of minimum cross-section area, indicative of wave speed flow limitation or "choking" (flow speed equals wave speed) in previous one-dimensional studies. For further reductions in downstream pressure, flow rate decreases. Cross-sectional narrowing is significant but localized. When the ratio of downstream-to-upstream wall thickness is ${\le}$ 2 the area throat is located near the downstream end; as wall taper is increased to ${\ge}$ 3 the constriction moves to the upstream end of the tube. In the planar two-dimensional channel, area reduction and flow limitation are also observed when outlet pressure is decreased. In contrast to the axisymmetric case, however, the elastic wall in the two-dimensional channel forms a smooth concave surface with the area throat located near the mid-point of the elastic wall. Though flow rate reaches a maximum and then falls, the flow does not appear to be choked.

  • PDF

Improvement of crossflow model of MULTID component in MARS-KS with inter-channel mixing model for enhancing analysis performance in rod bundle

  • Yunseok Lee;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4357-4366
    • /
    • 2023
  • MARS-KS, a domestic regulatory confirmatory code of Republic of Korea, had been developed by integrating RELAP5/MOD2 and COBRA-TF. The integration of COBRA-TF allowed to extend the capability of MARS-KS, limited to one-dimensional analysis, to multi-dimensional analysis. The use of COBRA-TF was mainly focused on subchannel analyses for simulating multi-dimensional behavior within the reactor core. However, this feature has been remained as a legacy without ongoing maintenance. Meanwhile, MARS-KS also includes its own multidimensional component, namely MULTID, which is also feasible to simulate three-dimensional convection and diffusion. The MULTID is capable of modeling the turbulent diffusion using simple mixing length model. The implementation of the turbulent mixing is of importance for analyzing the reactor core where a disturbing cross-sectional structure of rod bundle makes the flow perturbation and corresponding mixing stronger. In addition, the presence of this turbulent behavior allows the secondary transports with net mass exchange between subchannels. However, a series of assessments performed in previous studies revealed that the turbulence model of the MULTID could not simulate the aforementioned effective mixing occurred in the subchannel-scale problems. This is obvious consequence since the physical models of the MULTID neglect the effect of mass transport and thereby, it cannot model the void drift effect and resulting phasic distribution within a bundle. Thus, in this study, the turbulence mixing model of the MULTID has been improved by means of the inter-channel mixing model, widely utilized in subchannel analysis, in order to extend the application of the MULTID to small-scale problems. A series of assessments has been performed against rod bundle experiments, namely GE 3X3 and PSBT, to evaluate the performance of the introduced mixing model. The assessment results revealed that the application of the inter-channel mixing model allowed to enhance the prediction of the MULTID in subchannel scale problems. In addition, it was indicated that the code could not predict appropriate phasic distribution in the rod bundle without the model. Considering that the proper prediction of the phasic distribution is important when considering pin-based and/or assembly-based expressions of the reactor core, the results of this study clearly indicate that the inter-channel mixing model is required for analyzing the rod bundle, appropriately.

Radius Intermedius Stenosis Induced Myocardial Perfusion Defect: Provened by the Fusion Images of Myocardial Perfusion SPECT and 64 Channel CTA (심근관류 SPECT와 64채널 전산화 단층혈관 촬영 사진 융합으로 증명된 radius intermedius 협착에 의한 심근관류 저하)

  • Kong, Eun-Jung;Cho, Ihn-Ho;Chun, Kyung-Ah;Won, Kyu-Chang;Lee, Hyung-Woo;Park, Jong-Seon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.77-78
    • /
    • 2008
  • A 71-year-old woman was assigned to our department for Tc-99m myocardial perfusion SPECT(MPS) and coronary CT angiography. She admitted for substernal pain, via the ER, 2 days ago. The heart was scanned after intravenous injection of 925 MBq of $^{99m}Tc$-sestamibi adenosine-induced stress SPECT using dual head gamma camera (Hawkeye, GE healthcare. USA). The MPS shows decreased tracer uptake in the apical & mid area of anterior & lateral wall and mid & basal inferior wall. Coronary CT angiograph was obtained using Discovery VCT (GE healthcare). 3D angiography portrayed significant stenosis of ramus intermedius(RI) and posterolateral branch of right coronary artery(PLB) with fibrocalcified plaque. Two images were fused using Cardiac IQ fusion softwear package (Advantage workstation 4.4, GE healthcare) The fusion images explain the perfusion defect of anterior, lateral and inferior wall is due to stenosis of the RI and PLB. And 3 days later, coronary angiography was done and revealed the marked stenosis of RI and PLB. Then balloon angioplasty and stent was instituted in RI. Cardiac SPECT/CT fusion imaging provides additional information about hemodynamic relevance and facilitates lesion interpretation by allowing exact allocation of perfusion defects to its subtending coronary artery.

Evaluation of Radio-Frequency Performance of Gate-All-Around Ge/GaAs Heterojunction Tunneling Field-Effect Transistor with Hetero-Gate-Dielectric by Mixed-Mode Simulation

  • Roh, Hee Bum;Seo, Jae Hwa;Yoon, Young Jun;Bae, Jin-Hyuk;Cho, Eou-Sik;Lee, Jung-Hee;Cho, Seongjae;Kang, In Man
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2070-2078
    • /
    • 2014
  • In this work, the frequency response of gate-all-around (GAA) Ge/GaAs heterojunction tunneling field-effect transistor (TFET) with hetero-gate-dielectric (HGD) and pnpn channel doping profile has been analysed by technology computer-aided design (TCAD) device-circuit mixed-mode simulations, with comparison studies among ppn, pnpn, and HGD pnpn TFET devices. By recursive tracing of voltage transfer curves (VTCs) of a common-source (CS) amplifier based on the HGD pnpn TFET, the operation point (Q-point) was obtained at $V_{DS}=1V$, where the maximum available output swing was acquired without waveform distortion. The slope of VTC of the amplifier was 9.21 V/V (19.4 dB), which mainly resulted from the ponderable direct-current (DC) characteristics of HGD pnpn TFET. Along with the DC performances, frequency response with a small-signal voltage of 10 mV has been closely investigated in terms of voltage gain ($A_v$), unit-gain frequency ($f_{unity}$), and cut-off frequency ($f_T$). The Ge/GaAs HGD pnpn TFET demonstrated $A_v=19.4dB$, $f_{unity}=10THz$, $f_T=0.487$ THz and $f_{max}=18THz$.

[ $Ce^{4+}$ ]-Stimulated Ion Fluxes Are Responsible for Apoptosis and Taxol Biosynthesis in Suspension Cultures of Taxus Cells

  • Li Jing-Chuan;Ge Zhi-Qiang;Yuan Ying-Jin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.109-114
    • /
    • 2005
  • Ion fluxes across the plasma membrane activated by 1 mM $Ce^{4+}$, cell apoptosis and taxol biosynthesis in suspension cultures of Taxus cusp/data were studied. The extracellular pH sharply decreased upon the addition of 1 mM $Ce^{4+}$, then increased gradually and exceeded the initial pH value over a time period of 12 h. The extracellular $Ca^{2+}$ concentration decreased within the first 3 h after the addition of $Ce^{4+}$, then gradually decreased to one third of initial value in control at about 72 h and remained unchanged afterwards. Experiments with an ion channel blocker and a $Ca^{2+}$-channel blocker indicated that the dynamic changes in extracellular pH and the $Ca^{2+}$ concentration resulted from the $Ce^{4+}$-induced activation of W uptake and $Ca^{2+}$ influx across the plasma membrane via ion channels. A pretreatment of the ion channel blocker initiated $Ce^{4+}$-treated cells to undergo necrosis, and the prior addition of the $Ca^{2+}$-channel blocker inhibited $Ce^{4+}$-induced taxol biosynthesis and apoptosis. It is thus inferred that W uptake is necessary for cells to survive a $Ce^{4+}$-caused acidic environment and is one of the mechanisms of $Ce^{4+}$-induced apoptosis. Furthermore, the $Ca^{2+}$ influx across the plasma membrane mediated both the $Ce^{4+}$-induced apoptosis and taxol biosynthesis.