• Title/Summary/Keyword: Gaussian process model

Search Result 241, Processing Time 0.034 seconds

GMM-KL Framework for Indoor Scene Matching (실내 환경 이미지 매칭을 위한 GMM-KL프레임워크)

  • Kim, Jun-Young;Ko, Han-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.61-63
    • /
    • 2005
  • Retreiving indoor scene reference image from database using visual information is important issue in Robot Navigation. Scene matching problem in navigation robot is not easy because input image that is taken in navigation process is affinly distorted. We represent probabilistic framework for the feature matching between features in input image and features in database reference images to guarantee robust scene matching efficiency. By reconstructing probabilistic scene matching framework we get a higher precision than the existing feaure-feature matching scheme. To construct probabilistic framework we represent each image as Gaussian Mixture Model using Expectation Maximization algorithm using SIFT(Scale Invariant Feature Transform).

  • PDF

IMPLEMENTATION OF DATA ASSIMILATION METHODOLOGY FOR PHYSICAL MODEL UNCERTAINTY EVALUATION USING POST-CHF EXPERIMENTAL DATA

  • Heo, Jaeseok;Lee, Seung-Wook;Kim, Kyung Doo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.619-632
    • /
    • 2014
  • The Best Estimate Plus Uncertainty (BEPU) method has been widely used to evaluate the uncertainty of a best-estimate thermal hydraulic system code against a figure of merit. This uncertainty is typically evaluated based on the physical model's uncertainties determined by expert judgment. This paper introduces the application of data assimilation methodology to determine the uncertainty bands of the physical models, e.g., the mean value and standard deviation of the parameters, based upon the statistical approach rather than expert judgment. Data assimilation suggests a mathematical methodology for the best estimate bias and the uncertainties of the physical models which optimize the system response following the calibration of model parameters and responses. The mathematical approaches include deterministic and probabilistic methods of data assimilation to solve both linear and nonlinear problems with the a posteriori distribution of parameters derived based on Bayes' theorem. The inverse problem was solved analytically to obtain the mean value and standard deviation of the parameters assuming Gaussian distributions for the parameters and responses, and a sampling method was utilized to illustrate the non-Gaussian a posteriori distributions of parameters. SPACE is used to demonstrate the data assimilation method by determining the bias and the uncertainty bands of the physical models employing Bennett's heated tube test data and Becker's post critical heat flux experimental data. Based on the results of the data assimilation process, the major sources of the modeling uncertainties were identified for further model development.

Analysis of 3D reconstructed images based on signal model of plane-based computational integral imaging reconstruction technique (평면기반 컴퓨터 집적 영상 복원 기술의 신호모델을 이용한 3D 복원 영상 분석)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.121-126
    • /
    • 2009
  • Plane-based computational integral imaging (CIIR) provides the reconstruction of depth-dependent 3D plane images. However, it has problem degrading the resolution of reconstructed images due to the artifact noise according to the depth. In this paper, to overcome this problem, a signal model for plane-based CIIR is explain. Also the compensation process is introduced to remove the noise caused from CIIR. Computational experiments show that we analyze the characteristics of noise in the reconstructed image of 2D Gaussian image and the high-resolution images can be obtained by using the compensation process.

Bayesian Optimization Analysis of Containment-Venting Operation in a Boiling Water Reactor Severe Accident

  • Zheng, Xiaoyu;Ishikawa, Jun;Sugiyama, Tomoyuki;Maruyama, Yu
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.434-441
    • /
    • 2017
  • Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the "black-box" code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents.

Enhancement of 3D image resolution in computational integral imaging reconstruction by a combination of a round mapping model and interpolation methods (원형매핑 모델과 보간법을 복합 사용하는 컴퓨터 집적 영상 복원 기술에서 3D 영상의 해상도 개선)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1853-1859
    • /
    • 2008
  • In this paper, we propose a novel method to improve the visual quality of reconstructed images for 3D pattern recognition based on the computational integral imaging reconstruction (CIIR). The proposed CIIR method provides improved 3D reconstructed images by superimposing magnified elemental images by a combination of a round mapping model and image interpolation algorithms. To objectively evaluate the proposed method, we introduce an experimental framework for a computational pickup process and a CIIR process using a Gaussian function and evaluate the proposed method. We also carry out experiments on 3D objects and present their results.

A Gaussian process-based response surface method for structural reliability analysis

  • Su, Guoshao;Jiang, Jianqing;Yu, Bo;Xiao, Yilong
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.549-567
    • /
    • 2015
  • A first-order moment method (FORM) reliability analysis is commonly used for structural stability analysis. It requires the values and partial derivatives of the performance to function with respect to the random variables for the design. These calculations can be cumbersome when the performance functions are implicit. A Gaussian process (GP)-based response surface is adopted in this study to approximate the limit state function. By using a trained GP model, a large number of values and partial derivatives of the performance functions can be obtained for conventional reliability analysis with a FORM, thereby reducing the number of stability analysis calculations. This dynamic renewed knowledge source can provide great assistance in improving the predictive capacity of GP during the iterative process, particularly from the view of machine learning. An iterative algorithm is therefore proposed to improve the precision of GP approximation around the design point by constantly adding new design points to the initial training set. Examples are provided to illustrate the GP-based response surface for both structural and non-structural reliability analyses. The results show that the proposed approach is applicable to structural reliability analyses that involve implicit performance functions and structural response evaluations that entail time-consuming finite element analyses.

Digitally Modulated Signal Classification based on Higher Order Statistics of Cyclostationary Process (순환정상 프로세스의 고차 통계 특성을 이용한 디지털 변조인식)

  • Ahn, Woo-Hyun;Nah, Sun-Phil;Seo, Bo-Seok
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.195-204
    • /
    • 2014
  • In this paper, we propose an automatic modulation classification method for ten digitally modulated baseband signals, such as 2-FSK, 4-FSK, 8-FSK, MSK, BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, and 64-QAM based on higher order statistics of cyclostationary process. The first order cyclic moments and higher order cyclic cumulants of the signal are used as features of the modulation signals. The proposed method consists of two stages. At the first stage, we classify modulation signals as M-FSK and non-FSK using peaks of the first order cyclic moment. At the next step, we apply the Gaussian mixture model-based classifier to classify non-FSK. Simulation results are demonstrated to evaluate the proposed scheme. The results show high probability of classification even in the presence of frequency and phase offsets.

High Noise Density Median Filter Method for Denoising Cancer Images Using Image Processing Techniques

  • Priyadharsini.M, Suriya;Sathiaseelan, J.G.R
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.308-318
    • /
    • 2022
  • Noise is a serious issue. While sending images via electronic communication, Impulse noise, which is created by unsteady voltage, is one of the most common noises in digital communication. During the acquisition process, pictures were collected. It is possible to obtain accurate diagnosis images by removing these noises without affecting the edges and tiny features. The New Average High Noise Density Median Filter. (HNDMF) was proposed in this paper, and it operates in two steps for each pixel. Filter can decide whether the test pixels is degraded by SPN. In the first stage, a detector identifies corrupted pixels, in the second stage, an algorithm replaced by noise free processed pixel, the New average suggested Filter produced for this window. The paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. In this paper the comparison of known image denoising is discussed and a new decision based weighted median filter used to remove impulse noise. Using Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Structure Similarity Index Method (SSIM) metrics, the paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. A detailed simulation process is performed to ensure the betterment of the presented model on the Mini-MIAS dataset. The obtained experimental values stated that the HNDMF model has reached to a better performance with the maximum picture quality. images affected by various amounts of pretend salt and paper noise, as well as speckle noise, are calculated and provided as experimental results. According to quality metrics, the HNDMF Method produces a superior result than the existing filter method. Accurately detect and replace salt and pepper noise pixel values with mean and median value in images. The proposed method is to improve the median filter with a significant change.

Analysis and Usage of Computer Experiments Using Spatial Linear Models (공간선형모형을 이용한 전산실험의 분석과 활용)

  • Park, Jeong-Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.2
    • /
    • pp.122-128
    • /
    • 2006
  • One feature of a computer simulation experiment, different from a physical experiment, is that the output is often deterministic. Moreover the codes are computationally very expensive to run. This paper deals with the design and analysis of computer experiments(DACE) which is a relatively new statistical research area. We model the response of computer experiments as the realization of a stochastic process. This approach is basically the same as using a spatial linear model. Applications to the optimal mechanical designing and model calibration problems are illustrated. Algorithms for selecting the best spatial linear model are also proposed.