• Title/Summary/Keyword: Gaussian process model

Search Result 241, Processing Time 0.031 seconds

The Construction Method of Precise DTM of UAV Images Using Sobel-median Filtering (소벨-메디언 필터링을 이용한 UAV 영상의 정밀 DTM 구축 방법에 관한 연구)

  • Na, Young-Woo
    • Journal of Urban Science
    • /
    • v.12 no.2
    • /
    • pp.43-52
    • /
    • 2023
  • UAV have the disadvantage that are weak from rainfall or winds due to the light platform, so use Scale-Invariant Feature Transform (SIFT) method which extrude keypoints in image matching process. To find the efficient filtering method for the construction of precise Digital Terrain Model (DTM) using UAV images, comparatively analyzed sobel and Differential of Gaussian (DoG) and found sobel is more efficient way to extrude buildings, trees, and so on. And edges are extruded more clearly when applying median additionally which have the merit of preserving edge and eliminating noise. In this study, applied sobel-median filtering which plus median to sobel and constructed the 1st filtered DTM that extrude building and trees and 2nd filtered DTM that extrude cars by threshold of gradient, Analysis of the degree of accuracy improvement showed that standard deviations of 1st filtered DTM and 2nd filtered DTM are 0.32m, 0.287m respectively, and both are acceptable for the tolerance of 0.33m for elevation points of 1/1,000 digital map, and the accuracy was increased about 10% by filtering automobiles. Plus, moving things are changed those position and direction in every image, and these are not target to filter because of the characteristic that is excluded from SIFT method.

Comparison of methods of approximating option prices with Variance gamma processes (Variance gamma 확률과정에서 근사적 옵션가격 결정방법의 비교)

  • Lee, Jaejoong;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.181-192
    • /
    • 2016
  • We consider several methods to approximate option prices with correction terms to the Black-Scholes option price. These methods are able to compute option prices from various risk-neutral distributions using relatively small data and simple computation. In this paper, we compare the performance of Edgeworth expansion, A-type and C-type Gram-Charlier expansions, a method of using Normal inverse gaussian distribution, and an asymptotic method of using nonlinear regression through simulation experiments and real KOSPI200 option data. We assume the variance gamma model in the simulation experiment, which has a closed-form solution for the option price among the pure jump $L{\acute{e}}vy$ processes. As a result, we found that methods to approximate an option price directly from the approximate price formula are better than methods to approximate option prices through the approximate risk-neutral density function. The method to approximate option prices by nonlinear regression showed relatively better performance among those compared.

Pitching Moment Coefficient Modeling of KF-16 using Adaptive Design of Experiments with cost consideration (실험비용을 고려한 적응적 실험설계법 기반 KF-16 피칭모멘트계수 모델링)

  • Lee, Don-Goo;Jin, Hyeon;Ahn, Jaemyung;Lee, Yeongbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.537-543
    • /
    • 2016
  • A new approach to systematically model aerodynamic coefficients using an adaptive sampling based wind tunnel testing considering cost is proposed. The Latin Hypercube design is used for selecting initial test points. The Gaussian Process (GP) is iteratively used during the experiment to determine additional experimental points that minimizes the uncertainty reduction per incremental cost. A numerical simulation based experiment was conducted using the static aerodynamic coefficient database a fighter aircraft, which demonstrated the validity of the proposed method.

Underwater Acoustic Communication Channel Modeling Regarding Magnitude Fluctuation Based on Ocean Surface Scattering Theory and BELLHOP Ray Model and Its Application to Passive Time-reversal Communication (해수면에 의한 신호 응답 강도의 시변동성 특성이 적용된 벨홉 기반의 수중음향 통신 채널 모델링 및 수동 시역전 통신 응용)

  • Kim, Joonsuk;Koh, Il-Suek;Lee, Yongshik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.116-123
    • /
    • 2013
  • This paper represents generation of time-varying underwater acoustic channels by performing scattering simulation with time-varying ocean surface and Kirchhoff approximation. In order to estimate the time-varying ocean surface, 1D Pierson-Moskowitz ocean power spectrum and Gaussian correlation function were used. The computed scattering coefficients are applied to the amplitudes of each impulse of BELLHOP simulation result. The scattering coefficients are then compared with measured doppler spectral density of signal components which were scattered from ocean surface and the correlation time used in the Gaussian correlation function was estimated by the comparison. Finally, bit-error-rate and channel correlation simulations were performed with the generated time-varying channel based on passive time-reversal communication scenario.

Infrared Image Segmentation by Extracting and Merging Region of Interest (관심영역 추출과 통합에 의한 적외선 영상 분할)

  • Yeom, Seokwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.493-497
    • /
    • 2016
  • Infrared (IR) imaging is capable of detecting targets that are not visible at night, thus it has been widely used for the security and defense system. However, the quality of the IR image is often degraded by low resolution and noise corruption. This paper addresses target segmentation with the IR image. Multiple regions of interest (ROI) are extracted by the multi-level segmentation and targets are segmented from the individual ROI. Each level of the multi-level segmentation is composed of a k-means clustering algorithm an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering algorithm initializes the parameters of the Gaussian mixture model (GMM) and the EM algorithm iteratively estimates those parameters. Each pixel is assigned to one of clusters during the decision. This paper proposes the selection and the merging of the extracted ROIs. ROI regions are selectively merged in order to include the overlapped ROI windows. In the experiments, the proposed method is tested on an IR image capturing two pedestrians at night. The performance is compared with conventional methods showing that the proposed method outperforms others.

Evaluation of a Thermal Conductivity Prediction Model for Compacted Clay Based on a Machine Learning Method (기계학습법을 통한 압축 벤토나이트의 열전도도 추정 모델 평가)

  • Yoon, Seok;Bang, Hyun-Tae;Kim, Geon-Young;Jeon, Haemin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • The buffer is a key component of an engineered barrier system that safeguards the disposal of high-level radioactive waste. Buffers are located between disposal canisters and host rock, and they can restrain the release of radionuclides and protect canisters from the inflow of ground water. Since considerable heat is released from a disposal canister to the surrounding buffer, the thermal conductivity of the buffer is a very important parameter in the entire disposal safety. For this reason, a lot of research has been conducted on thermal conductivity prediction models that consider various factors. In this study, the thermal conductivity of a buffer is estimated using the machine learning methods of: linear regression, decision tree, support vector machine (SVM), ensemble, Gaussian process regression (GPR), neural network, deep belief network, and genetic programming. In the results, the machine learning methods such as ensemble, genetic programming, SVM with cubic parameter, and GPR showed better performance compared with the regression model, with the ensemble with XGBoost and Gaussian process regression models showing best performance.

Image Interpolation Using Hidden Markov Tree Model Without Training in Wavelet Domain (웨이블릿 영역에서 훈련 없는 은닉 마코프 트리 모델을 이용한 영상 보간)

  • 우동헌;엄일규;김유신
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • Wavelet transform is a useful tool for analysis and process of image. This showed good performance in image compression and noise reduction. Wavelet coefficients can be effectively modeled by hidden Markov tree(HMT) model. However, in application of HMT model to image interpolation, training procedure is needed. Moreover, the parameters obtained from training procedure do not match input image well. In this paper, the structure of HMT is used for image interpolation, and the parameters of HMT are obtained from statistical characteristics across wavelet subbands without training procedure. In the proposed method, wavelet coefficient is modeled as Gaussian mixture model(GMM). In GMM, state transition probabilities are determined from statistical transition characteristic of coefficient across subbands, and the variance of each state is estimated using the property of exponential decay of wavelet coefficient. In simulation, the proposed method shows improvement of performance compared with conventional bicubic method and the method using HMT model with training.

Design of Data-centroid Radial Basis Function Neural Network with Extended Polynomial Type and Its Optimization (데이터 중심 다항식 확장형 RBF 신경회로망의 설계 및 최적화)

  • Oh, Sung-Kwun;Kim, Young-Hoon;Park, Ho-Sung;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Model-based Body Motion Tracking of a Walking Human (모델 기반의 보행자 신체 추적 기법)

  • Lee, Woo-Ram;Ko, Han-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.75-83
    • /
    • 2007
  • A model based approach of tracking the limbs of a walking human subject is proposed in this paper. The tracking process begins by building a data base composed of conditional probabilities of motions between the limbs of a walking subject. With a suitable amount of video footage from various human subjects included in the database, a probabilistic model characterizing the relationships between motions of limbs is developed. The motion tracking of a test subject begins with identifying and tracking limbs from the surveillance video image using the edge and silhouette detection methods. When occlusion occurs in any of the limbs being tracked, the approach uses the probabilistic motion model in conjunction with the minimum cost based edge and silhouette tracking model to determine the motion of the limb occluded in the image. The method has shown promising results of tracking occluded limbs in the validation tests.

The Gauss, Rayleigh and Nakagami Probability Density Distribution Based on the Decreased Exponential Probability Distribution (감쇄지수함수 확률분포에 의한 가우스, 레일레이, 나카가미 확률 밀도 분포)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.59-68
    • /
    • 2017
  • Random process plays a major role in wireless communication system to analytically derive the probability distribution function of the various statistical distribution. In this paper, we derive the decreasing function of the exponential distribution under the given condition which is expressed as wireless channel condition. The probability distribution function of Gaussian, Laplacian, Rayleigh and Nakagami distribution are also derived. Extensive simulation results of these statistical distributions are provided to prove that random process has a significant role in the wireless communications. In addition, the Rayleigh and Rician channels show specific examples of visible distance communication and invisible distance channel environment. This paper is motivated by that we assume a block fading channel model, where the channel is constant during a transmission block and changes independently between consecutive transmission block, can achieve a better performance in high SNR regime with i.i.d channel. This algorithm for realizing these transforms can be applied to the Kronecker MIMO channel.