• 제목/요약/키워드: Gaussian potential

검색결과 155건 처리시간 0.036초

선미부에 유동제어판을 부착한 선박에 대한 포텐셜 유동해석 (Potential Flow Analysis for a Ship with a Flow Control Plate near the Stern)

  • 최희종;전호환;윤현식;이인원;박동우;김동진
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.587-594
    • /
    • 2009
  • In the paper the effect of a stern-plate attached to a ship was taken into account. The relationship between the trim angle of a ship and the wave-resistance coefficient induced by the a stern-plate was studied using the potential flow analysis method. Numerical algorithm was described using the panel method and the vortex lattice method(VLM) to simulate the flow phenomena around a ship. The non-linearity of the free surface boundary conditions were considered using the iterative method and the IGE-GMRES(Incomplete Gaussian Elimination-The Generalized Minimal RESidual) algorithm was adopted to solve the linear equation at each iterative step. Numerical calculations were carried out to investigate the validity of the adopted algorithm using KCS(KRISO 3600 TEU Container) hull. Possible cases for attachment of the plate were checked. The results showed that the numerical algorithm could be physically appropriate.

Beam Shaping and Speckle Reduction in Laser Projection Display Systems Using a Vibrating Diffractive Optical Element

  • Liang, Chuanyang;Zhang, Wei;Wu, Zhihui;Rui, Dawei;Sui, Yongxin;Yang, Huaijiang
    • Current Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.23-28
    • /
    • 2017
  • The laser has been regarded as the potential illumination source for the next generation of projectors. However, currently the major issues in applying the laser as an illumination source for projectors are beam shaping and laser speckle. We present a compact solution for both issues by using a vibrating diffractive optical element (DOE). The DOE is designed and fabricated, and it successfully transforms the circular Gaussian laser beam to a low speckle contrast uniform rectangular pattern. Under a vibration frequency of 150 Hz and amplitude of $200{\mu}m$, the speckle contrast value is reduced from 67.67% to 13.78%, and the ANSI uniformity is improved from 24.36% to 85.54%. The experimental results demonstrate the feasibility and potential of the proposed scheme, and the proposed method is a feasible approach to the miniaturization of laser projection display illumination systems.

The Kernel Trick for Content-Based Media Retrieval in Online Social Networks

  • Cha, Guang-Ho
    • Journal of Information Processing Systems
    • /
    • 제17권5호
    • /
    • pp.1020-1033
    • /
    • 2021
  • Nowadays, online or mobile social network services (SNS) are very popular and widely spread in our society and daily lives to instantly share, disseminate, and search information. In particular, SNS such as YouTube, Flickr, Facebook, and Amazon allow users to upload billions of images or videos and also provide a number of multimedia information to users. Information retrieval in multimedia-rich SNS is very useful but challenging task. Content-based media retrieval (CBMR) is the process of obtaining the relevant image or video objects for a given query from a collection of information sources. However, CBMR suffers from the dimensionality curse due to inherent high dimensionality features of media data. This paper investigates the effectiveness of the kernel trick in CBMR, specifically, the kernel principal component analysis (KPCA) for dimensionality reduction. KPCA is a nonlinear extension of linear principal component analysis (LPCA) to discovering nonlinear embeddings using the kernel trick. The fundamental idea of KPCA is mapping the input data into a highdimensional feature space through a nonlinear kernel function and then computing the principal components on that mapped space. This paper investigates the potential of KPCA in CBMR for feature extraction or dimensionality reduction. Using the Gaussian kernel in our experiments, we compute the principal components of an image dataset in the transformed space and then we use them as new feature dimensions for the image dataset. Moreover, KPCA can be applied to other many domains including CBMR, where LPCA has been used to extract features and where the nonlinear extension would be effective. Our results from extensive experiments demonstrate that the potential of KPCA is very encouraging compared with LPCA in CBMR.

A Study on Shipborne Automatic Identification System (AIS)

  • Liu, Renji;Liu, Chang
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2001년도 Proceeding of KIN-CIN Joint Symposium 2001 on Satellite Navigation/AIS, lntelligence , Computer Based Marine Simulation System and VDR
    • /
    • pp.19-25
    • /
    • 2001
  • At present the identification of vessels is still depending on the OOW (Officer Of Wateh) in VTS (Vessel Traffic Service), which is completed by radar, and also by the combination of VHF radio and VHF direction finder. However, with the development of port transportation and economic, this conventional way of identification can't satisfy more and more request for the information that the VTS needs from the vessels. In such a case, the AIS(Automatic Identification System) precept which is based on STDMA (Self-organized Time Division Multiple Access) technique is put forward by IMO (International Maritime Organization). AIS can automatically provide the information, including own ship's identification, type, position, course, speed, and other information to the appropriately equipped coast station and other ships. At the same time it can also automatically monitor and track the nearby ships similarly fitted with AIS. On the basis of describing the whole comprising and the format of transmission information of AIS, this paper mainly studies the key communication techniques in AIS, such as STDMA protocol, net synchronization and GMSK(Gaussian Minimum Shift Keying)technique, and so on. At last this paper briefly introduces the recommendation decided by IMO on forcing the sea-going ships to fixed with AIS equipments, and it continuos with the unexploited potential of AIS if it applies in VTS.

  • PDF

벌크형 와이어직조 카고메 트러스 PCM의 압축거동 (II) - 결함의 영향 - (Mechanical Behaviors under Compression in Wire-woven Bulk Kagome Truss PCMs (II) - Effects of Geometric and Material Imperfections -)

  • 현상일;최지은;강기주
    • 대한기계학회논문집A
    • /
    • 제31권7호
    • /
    • pp.792-799
    • /
    • 2007
  • A newly developed cellular metal based on kagome lattice is an ideal candidate for multifunctional materials achieving various optimal properties. Intensive efforts have been devoted to develop efficient techniques for mass production due to its wide potential applications. Since a variety of imperfections would be inevitably included in the realistic fabrication processes, it is highly important to examine the correlation between the imperfections and material strengths. Previous performance tests were mostly done by numerical simulations such as finite element method (FEM), but only for perfect structures without any imperfection. In this paper, we developed an efficient numerical framework using nonlinear random network analysis (RNA) to verify how the statistical imperfections (geometrical and material property) contribute to the performance of general truss structures. The numerical results for kagome truss structures are compared with experimental measurements on 3-layerd WBK (wire-woven bulk kagome). The mechanical strength of the kagome structures is shown relatively stable with the Gaussian types of imperfections.

벌크형 와이어직조 카고메 트러스 PCM 의 압축거동- 제 2 보: 결함의 영향 (Mechanical Behaviors under Compression in Wire-woven Bulk Kagome Truss PCMs-Part II: Effects of Geometric and Material Imperfections)

  • 현상일;최지은;강기주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.78-83
    • /
    • 2007
  • A newly developed cellular metal based on kagome lattice is an ideal candidate for multifunctional materials achieving various optimal properties. Intensive efforts have been devoted to develop efficient techniques for mass production due to its wide potential applications. Since a variety of imperfections would be inevitably included in the realistic fabrication processes, it is highly important to examine the correlation between the imperfections and material strengths. Previous performance tests were mostly done by numerical simulations such as finite element method (FEM), but only for perfect structures without any imperfection. In this paper, we developed an efficient numerical framework using nonlinear random network analysis (RNA) to verify how the statistical imperfections (geometrical and material property) contribute to the performance of general truss structures. The numerical results for kagome truss structures are compared with experimental measurements on 3-layerd WBK (wire-woven bulk kagome). The mechanical strength of the kagome structures is shown relatively stable with the Gaussian types of imperfections.

  • PDF

퍼프 유적선모델에 의한 대기오염물질의 장거리수송량의 평가 (Assessment of Long-Range Transport of Atmospheric Pollutants using a Trajectory Model with the puff Concept)

  • 정관영
    • 한국대기환경학회지
    • /
    • 제12권2호
    • /
    • pp.167-177
    • /
    • 1996
  • To investigate the source-receptor relationships aerosol model has been used to simulate the distribution behavior of the yellow sand. Data for meteorological fields were obtained by Meso-scale Analysis and Prediction Model System/Seoul National University (MAPMS/SNU) for five days (10-14 April 1988). To obtain the distributions of concentration of yellow sand,the aerosol model has been modified to allow quantifications of relative concentration distributions of yellow sand. Source regions of yellow sand were delineated by soil maps of China and emission rate as a function of wind stress(Westphal et al., 1987). Using 3-dimensional wind fields the backward trajectories from 3 receptor grids at the layer of .sigma. =0.95, 0.9, 0.85, 0.8 were calculated. In order to facilitate quantitative assessment of source-receptor relationships, it was assumed that the perturbations in along-trajectory and cross-trajectory proceed linearly with time, in accord with Gaussian distribution characteristics. On the basis of this assumption, the probability fields were calculated from every grid point with source strength 1. Using these probability fields and emission retes, the potential contributions of upstream sources along the trajectories were estimated. The results of this study indicate that the application of trajectory modeling is useful in investigating the quantitative relationship between source and receptor regions.

  • PDF

CCTV 영상처리를 이용한 터널 내 사고감지 알고리즘 (An In-Tunnel Traffic Accident Detection Algorithm using CCTV Image Processing)

  • 백정희;민주영;남궁성;윤석환
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권2호
    • /
    • pp.83-90
    • /
    • 2015
  • 현존하는 자동 사고감지 알고리즘의 대부분은 개방도로 혹은 터널 내에서 사고 발생 시 이것을 사고로 감지하지 못하고 혼잡으로 감지하는 경우가 많다는 문제점을 가지고 있다. 본 논문에서는 개방도로에서의 사고감지 알고리즘을 기반으로 터널 내에서의 사고감지 알고리즘을 개선하여 감지율을 높일 수 있는 알고리즘을 제안하였다. 개선된 알고리즘은 가우시안 혼합모델을 이용하여 픽셀의 변화량을 판단하여 터널 내 사고로 인한 정지차량을 우선 감지한 후 도로를 블록화하여 블록 간 점유율의 편차를 분석하여 최종 판단을 한다. 실제 사고영상에 알고리즘을 적용한 실험에서 모두 오류 없이 검지하였음을 확인하였다.

거친 면 접촉의 정적 마찰계수 해석 (Analysis of the Static Friction Coefficient of Contacting Rough Surfaces in Miniature Systems)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제19권4호
    • /
    • pp.230-236
    • /
    • 2003
  • In applications such as MEMS and NEMS devices, the adhesion force and contact load may be of the same order of magnitude and the static friction coefficient can be very large. Such large coefficient may result in unacceptable and possibly catastrophic adhesion, stiction, friction and wear. To obtain the static friction coefficient of contacting real surfaces without the assumption of an empirical coefficient value, numerical simulations of the contact load, tangential force, and adhesion force are preformed. The surfaces in dry contact are statistically modeled by a collection of spherical asperities with Gaussian height distribution. The asperity micro-contact model utilized in calculation (the ZMC model), considers the transition from elastic deformation to fully plastic flow of the contacting asperity. The force approach of the modified DMT model using the Lennard-Jones attractive potential is applied to characterize the intermolecular forces. The effect of the surface topography on the static friction coefficient is investigated for cases rough, intermediate, smooth, and very smooth, respectively. Results of the static friction coefficient versus the external force are presented for a wide range of plasticity index and surface energy, respectively. Compared with those obtained by the GW and CEB models, the ZMC model is more complete in calculating the static friction coefficient of rough surfaces.

A biologically inspired model based on a multi-scale spatial representation for goal-directed navigation

  • Li, Weilong;Wu, Dewei;Du, Jia;Zhou, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1477-1491
    • /
    • 2017
  • Inspired by the multi-scale nature of hippocampal place cells, a biologically inspired model based on a multi-scale spatial representation for goal-directed navigation is proposed in order to achieve robotic spatial cognition and autonomous navigation. First, a map of the place cells is constructed in different scales, which is used for encoding the spatial environment. Then, the firing rate of the place cells in each layer is calculated by the Gaussian function as the input of the Q-learning process. The robot decides on its next direction for movement through several candidate actions according to the rules of action selection. After several training trials, the robot can accumulate experiential knowledge and thus learn an appropriate navigation policy to find its goal. The results in simulation show that, in contrast to the other two methods(G-Q, S-Q), the multi-scale model presented in this paper is not only in line with the multi-scale nature of place cells, but also has a faster learning potential to find the optimized path to the goal. Additionally, this method also has a good ability to complete the goal-directed navigation task in large space and in the environments with obstacles.