• Title/Summary/Keyword: Gaussian model

Search Result 1,411, Processing Time 0.03 seconds

Evaluation of the Uncertainties in Rainfall-Runoff Model Using Meta-Gaussian Approach (Meta-Gaussian 방법을 이용한 강우-유출 모형에서의 불확실성 산정)

  • Kim, Byung-Sik;Kim, Bo-Kyung;Kwon, Hyun-Han
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.49-64
    • /
    • 2009
  • Rainfall-runoff models are used for efficient management, distribution, planning, and design of water resources in accordance with the process of hydrologic cycle. The models simplify the transition of rainfall to runoff as rainfall through different processes including evaporation, transpiration, interception, and infiltration. As the models simplify complex physical processes, gaps between the models and actual rainfall events exist. For more accurate simulation, appropriate models that suit analysis goals are selected and reliable long-term hydrological data are collected. However, uncertainty is inherent in models. It is therefore necessary to evaluate reliability of simulation results from models. A number of studies have evaluated uncertainty ingrained in rainfall-runoff models. In this paper, Meta-Gaussian method proposed by Montanari and Brath(2004) was used to assess uncertainty of simulation outputs from rainfall-runoff models. The model, which estimates upper and lower bounds of the confidence interval from probabilistic distribution of a model's error, can quantify global uncertainty of hydrological models. In this paper, Meta-Gaussian method was applied to analyze uncertainty of simulated runoff outputs from $Vflo^{TM}$, a physically-based distribution model and HEC-HMS model, a conceptual lumped model.

  • PDF

Bayesian Model Selection for Inverse Gaussian Populations with Heterogeneity

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.621-634
    • /
    • 2008
  • This paper addresses the problem of testing whether the means in several inverse Gaussian populations with heterogeneity are equal. The analysis of reciprocals for the equality of inverse Gaussian means needs the assumption of equal scale parameters. We propose Bayesian model selection procedures for testing equality of the inverse Gaussian means under the noninformative prior without the assumption of equal scale parameters. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian model selection procedures based on the fractional Bayes factor and the intrinsic Bayes factor under the reference prior. Simulation study and real data analysis are provided.

  • PDF

Wind Tunnel Experiments for Studying Atmospheric Dispersion in the Complex Terrain II. Gaussian Modeling of Experiments in a Moutainous Area (복잡한 지형내 오염물질의 대기확산 풍동실험 I I. 산지지형 실험의 Gaussian 모델링)

  • 김영성;경남호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.145-152
    • /
    • 1995
  • Predictability of a Gaussian model, ISCST2 was assessed by scaling up wind tunnel experiments with a 1/3,000 terrain model to the real scale. Concentration profiles obtained from the flat-terrain experiment in the neutral condition were estimated to be in agreement with the calculated ones from ISCST2 in the stability class A, but the difference between the two was still large. Concentration profiles from the mountainous-terrain experiments were better fitted to the calculated ones primarily because in the experiment, concentration behind the source was raised due to the effect of a hill in the upstream side. Model prediction was improved with including the downwash effect of buildings and the hill, but overall concentration profiles were not much different from a typical Gaussian profile. While concentration profiles in the experiments were changed with local flows by varying the wind direction and the topography, those from the Gaussian modeling were mot freely changed together with these variations.

  • PDF

SATURATION-VALUE TOTAL VARIATION BASED COLOR IMAGE DENOISING UNDER MIXED MULTIPLICATIVE AND GAUSSIAN NOISE

  • JUNG, MIYOUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.3
    • /
    • pp.156-184
    • /
    • 2022
  • In this article, we propose a novel variational model for restoring color images corrupted by mixed multiplicative Gamma noise and additive Gaussian noise. The model involves a data-fidelity term that characterizes the mixed noise as an infimal convolution of two noise distributions and the saturation-value total variation (SVTV) regularization. The data-fidelity term facilitates suitable separation of the multiplicative Gamma and Gaussian noise components, promoting simultaneous elimination of the mixed noise. Furthermore, the SVTV regularization enables adequate denoising of homogeneous regions, while maintaining edges and details and diminishing the color artifacts induced by noise. To solve the proposed nonconvex model, we exploit an alternating minimization approach, and then the alternating direction method of multipliers is adopted for solving subproblems. This contributes to an efficient iterative algorithm. The experimental results demonstrate the superior performance of the proposed model compared to other existing or related models, with regard to visual inspection and image quality measurements.

Influence of non-Gaussian characteristics of wind load on fatigue damage of wind turbine

  • Zhu, Ying;Shuang, Miao
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.217-227
    • /
    • 2020
  • Based on translation models, both Gaussian and non-Gaussian wind fields are generated using spectral representation method for investigating the influence of non-Gaussian characteristics and directivity effect of wind load on fatigue damage of wind turbine. Using the blade aerodynamic model and multi-body dynamics, dynamic responses are calculated. Using linear damage accumulation theory and linear crack propagation theory, crack initiation life and crack propagation life are discussed with consideration of the joint probability density distribution of the wind direction and mean wind speed in detail. The result shows that non-Gaussian characteristics of wind load have less influence on fatigue life of wind turbine in the area with smaller annual mean wind speeds. Whereas, the influence becomes significant with the increase of the annual mean wind speed. When the annual mean wind speeds are 7 m/s and 9 m/s at hub height of 90 m, the crack initiation lives under softening non-Gaussian wind decrease by 10% compared with Gaussian wind fields or at higher hub height. The study indicates that the consideration of the influence of softening non-Gaussian characteristics of wind inflows can significantly decrease the fatigue life, and, if neglected, it can result in non-conservative fatigue life estimates for the areas with higher annual mean wind speeds.

Gaussian Model Optimization using Configuration Thread Control In CHMM Vocabulary Recognition (CHMM 어휘 인식에서 형상 형성 제어를 이용한 가우시안 모델 최적화)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.7
    • /
    • pp.167-172
    • /
    • 2012
  • In vocabulary recognition using HMM(Hidden Markov Model) by model for the observation of a discrete probability distribution indicates the advantages of low computational complexity, but relatively low recognition rate has the disadvantage that require sophisticated smoothing process. Gaussian mixtures in order to improve them with a continuous probability density CHMM (Continuous Hidden Markov Model) model is proposed for the optimization of the library system. In this paper is system configuration thread control in recognition Gaussian mixtures model provides a model to optimize of the CHMM vocabulary recognition. The result of applying the proposed system, the recognition rate of 98.1% in vocabulary recognition, respectively.

Radar target recognition using Gaussian mixture model over wide-angular region (Gaussian Mixture Model을 이용한 넓은 관측각에서의 효율적인 레이더 표적인식)

  • 서동규;김경태;김효태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.195-198
    • /
    • 2002
  • One-dimensional radar signature, such as range profile, is highly dependent on the aspect angle. Therefore, radar target recognition over wide angular region is a very difficult task. In this paper, we propose the Bayes classifier with Gaussian mixture model for radar target recognition over wide-angular region and compare performances of proposed technique and radar target recognition with subclasses concept in the literature of probability of correct classification ratio.

  • PDF

Semi-Supervised Learning Using Kernel Estimation

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.629-636
    • /
    • 2007
  • A kernel type semi-supervised estimate is proposed. The proposed estimate is based on the penalized least squares loss and the principle of Gaussian Random Fields Model. As a result, we can estimate the label of new unlabeled data without re-computation of the algorithm that is different from the existing transductive semi-supervised learning. Also our estimate is viewed as a general form of Gaussian Random Fields Model. We give experimental evidence suggesting that our estimate is able to use unlabeled data effectively and yields good classification.

  • PDF

Online nonparametric Bayesian analysis of parsimonious Gaussian mixture models and scenes clustering

  • Zhou, Ri-Gui;Wang, Wei
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.74-81
    • /
    • 2021
  • The mixture model is a very powerful and flexible tool in clustering analysis. Based on the Dirichlet process and parsimonious Gaussian distribution, we propose a new nonparametric mixture framework for solving challenging clustering problems. Meanwhile, the inference of the model depends on the efficient online variational Bayesian approach, which enhances the information exchange between the whole and the part to a certain extent and applies to scalable datasets. The experiments on the scene database indicate that the novel clustering framework, when combined with a convolutional neural network for feature extraction, has meaningful advantages over other models.

A Gaussian Jet Model for Deriving Absolute Geostrophic Velocity from Satellite Altimetry

  • Kim, Seung-Bum
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.610-614
    • /
    • 2002
  • Time-mean and absolute geostrophic velocities of the Kuroshio current south of Japan are derived from TOPEX/Poseidon altimeter data using a Gaussian jet model. When compared with simultaneous measurements from a shipboard acoustic Doppler current profiler (ADCP) at two intersection points, the altimetric and ADCP absolute velocities correlate well with the correlation of 0.55 to 0.74. The time-mean velocity is accurate to 1 cm s$^{-1}$ to 5 cm s$^{-1}$. The errors in the absolute and the mean velocities are similar to those reported previously far other currents. The comparable performance suggests the Gaussian jet model is a promising methodology for determining absolute geostrophic velocities, noting that in this region the Kuroshio does not meander sufficiently, which provides unfavorable environment for the performance of the Gaussian jet model.

  • PDF