• Title/Summary/Keyword: Gaussian mixture model-based

Search Result 271, Processing Time 0.027 seconds

Speaker Normalization using Gaussian Mixture Model for Speaker Independent Speech Recognition (화자독립 음성인식을 위한 GMM 기반 화자 정규화)

  • Shin, Ok-Keun
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.437-442
    • /
    • 2005
  • For the purpose of speaker normalization in speaker independent speech recognition systems, experiments are conducted on a method based on Gaussian mixture model(GMM). The method, which is an improvement of the previous study based on vector quantizer, consists of modeling the probability distribution of canonical feature vectors by a GMM with an appropriate number of clusters, and of estimating the warp factor of a test speaker by making use of the obtained probabilistic model. The purpose of this study is twofold: improving the existing ML based methods, and comparing the performance of what is called 'soft decision' method with that of the previous study based on vector quantizer. The effectiveness of the proposed method is investigated by recognition experiments on the TIMIT corpus. The experimental results showed that a little improvement could be obtained tv adjusting the number of clusters in GMM appropriately.

Speaker Verification Using SVM Kernel with GMM-Supervector Based on the Mahalanobis Distance (Mahalanobis 거리측정 방법 기반의 GMM-Supervector SVM 커널을 이용한 화자인증 방법)

  • Kim, Hyoung-Gook;Shin, Dong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.216-221
    • /
    • 2010
  • In this paper, we propose speaker verification method using Support Vector Machine (SVM) kernel with Gaussian Mixture Model (GMM)-supervector based on the Mahalanobis distance. The proposed GMM-supervector SVM kernel method is combined GMM with SVM. The GMM-supervectors are generated by GMM parameters of speaker and other speaker utterances. A speaker verification threshold of GMM-supervectors is decided by SVM kernel based on Mahalanobis distance to improve speaker verification accuracy. The experimental results for text-independent speaker verification using 20 speakers demonstrates the performance of the proposed method compared to GMM, SVM, GMM-supervector SVM kernel based on Kullback-Leibler (KL) divergence, and GMM-supervector SVM kernel based on Bhattacharyya distance.

A Density-based Clustering Method

  • Ahn, Sung Mahn;Baik, Sung Wook
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.715-723
    • /
    • 2002
  • This paper is to show a clustering application of a density estimation method that utilizes the Gaussian mixture model. We define "closeness measure" as a clustering criterion to see how close given two Gaussian components are. Closeness measure is defined as the ratio of log likelihood between two Gaussian components. According to simulations using artificial data, the clustering algorithm turned out to be very powerful in that it can correctly determine clusters in complex situations, and very flexible in that it can produce different sizes of clusters based on different threshold valuesold values

Design of Moving Object Detector Based on Gaussian Mixture Model (Gaussian Mixture Model 기반 이동 객체 검출기의 하드웨어 구조 설계)

  • Cho, Jae-Chan;Jung, Yong-Chul;Yoon, Kyunghan;Jung, Yunho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1571-1572
    • /
    • 2015
  • 본 논문에서는 GMM (Gaussian mixture model) 기반의 BS (background subtraction) 알고리즘을 이용한 이동 객체 검출기의 하드웨어 구조 설계 결과를 제시하였다. 설계된 이동객체 검출기는 1280 * 720 HD 해상도의 영상을 30 frames per second로 실시간 처리가 가능하다. 하드웨어 구현은 Verilog-HDL을 이용하였으며, FPGA 기반 구현 결과, 설계된 이동 객체 검출기는 582 Slice, 1,698 Slice LUT, 8 DSP48s, 1,769 Flip Flop, 691.2 KByte BRAM으로 구성되었음을 확인하였다.

Color Image Segmentation Based on Morphological Operation and a Gaussian Mixture Model (모폴로지 연산과 가우시안 혼합 모형에 기반한 컬러 영상 분할)

  • Lee Myung-Eun;Park Soon-Young;Cho Wan-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.84-91
    • /
    • 2006
  • In this paper, we present a new segmentation algorithm for color images based on mathematical morphology and a Gaussian mixture model(GMM). We use the morphological operations to determine the number of components in a mixture model and to detect their modes of each mixture component. Next, we have adopted the GMM to represent the probability distribution of color feature vectors and used the deterministic annealing expectation maximization (DAEM) algorithm to estimate the parameters of the GMM that represents the multi-colored objects statistically. Finally, we segment the color image by using posterior probability of each pixel computed from the GMM. The experimental results show that the morphological operation is efficient to determine a number of components and initial modes of each component in the mixture model. And also it shows that the proposed DAEM provides a global optimal solution for the parameter estimation in the mixture model and the natural color images are segmented efficiently by using the GMM with parameters estimated by morphological operations and the DAEM algorithm.

Voice-Pishing Detection Algorithm Based on Minimum Classification Error Technique (최소 분류 오차 기법을 이용한 보이스 피싱 검출 알고리즘)

  • Lee, Kye-Hwan;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.138-142
    • /
    • 2009
  • We propose an effective voice-phishing detection algorithm based on discriminative weight training. The detection of voice phishing is performed based on a Gaussian mixture model (GMM) incorporaiting minimum classification error (MCE) technique. Actually, the MCE technique is based on log-likelihood from the decoding parameter of the SMV(Selectable Mode Vocoder) directly extracted from the decoding process in the mobile phone. According to the experimental result, the proposed approach is found to be effective for the voice phishing detection.

A Gaussian Mixture Model Based Surface Electromyogram Pattern Classification Algorithm for Estimation of Wrist Motions (손목 움직임 추정을 위한 Gaussian Mixture Model 기반 표면 근전도 패턴 분류 알고리즘)

  • Jeong, Eui-Chul;Yu, Song-Hyun;Lee, Sang-Min;Song, Young-Rok
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • In this paper, the Gaussian Mixture Model(GMM) which is very robust modeling for pattern classification is proposed to classify wrist motions using surface electromyograms(EMG). EMG is widely used to recognize wrist motions such as up, down, left, right, rest, and is obtained from two electrodes placed on the flexor carpi ulnaris and extensor carpi ulnaris of 15 subjects under no strain condition during wrist motions. Also, EMG-based feature is derived from extracted EMG signals in time domain for fast processing. The estimated features based in difference absolute mean value(DAMV) are used for motion classification through GMM. The performance of our approach is evaluated by recognition rates and it is found that the proposed GMM-based method yields better results than conventional schemes including k-Nearest Neighbor(k-NN), Quadratic Discriminant Analysis(QDA) and Linear Discriminant Analysis(LDA).

Improved Minimum Statistics Based on Environment-Awareness for Noise Power Estimation (환경인식 기반의 향상된 Minimum Statistics 잡음전력 추정기법)

  • Son, Young-Ho;Choi, Jae-Hun;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.123-128
    • /
    • 2011
  • In this paper, we propose the improved noise power estimation in speech enhancement under various noise environments. The previous MS algorithm tracking the minimum value of finite search window uses the optimal power spectrum of signal for smoothing and adopts minimum probability. From the investigation of the previous MS-based methods it can be seen that a fixed size of the minimum search window is assumed regardless of the various environment. To achieve the different search window size, we use the noise classification algorithm based on the Gaussian mixture model (GMM). Performance of the proposed enhancement algorithm is evaluated by ITU-T P.862 perceptual evaluation of speech quality (PESQ) under various noise environments. Based on this, we show that the proposed algorithm yields better result compared to the conventional MS method.

Implementation of the Timbre-based Emotion Recognition Algorithm for a Healthcare Robot Application (헬스케어 로봇으로의 응용을 위한 음색기반의 감정인식 알고리즘 구현)

  • Kong, Jung-Shik;Kwon, Oh-Sang;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.43-46
    • /
    • 2009
  • This paper deals with feeling recognition from people's voice to fine feature vectors. Voice signals include the people's own information and but also people's feelings and fatigues. So, many researches are being progressed to fine the feelings from people's voice. In this paper, We analysis Selectable Mode Vocoder(SMV) that is one of the standard 3GPP2 codecs of ETSI. From the analyzed result, we propose voices features for recognizing feelings. And then, feeling recognition algorithm based on gaussian mixture model(GMM) is proposed. It uses feature vectors is suggested. We verify the performance of this algorithm from changing the mixture component.

  • PDF

Animal Tracking in Infrared Video based on Adaptive GMOF and Kalman Filter

  • Pham, Van Khien;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.78-87
    • /
    • 2016
  • The major problems of recent object tracking methods are related to the inefficient detection of moving objects due to occlusions, noisy background and inconsistent body motion. This paper presents a robust method for the detection and tracking of a moving in infrared animal videos. The tracking system is based on adaptive optical flow generation, Gaussian mixture and Kalman filtering. The adaptive Gaussian model of optical flow (GMOF) is used to extract foreground and noises are removed based on the object motion. Kalman filter enables the prediction of the object position in the presence of partial occlusions, and changes the size of the animal detected automatically along the image sequence. The presented method is evaluated in various environments of unstable background because of winds, and illuminations changes. The results show that our approach is more robust to background noises and performs better than previous methods.