• Title/Summary/Keyword: Gaussian beam

Search Result 231, Processing Time 0.024 seconds

Development of an Analytic Software Using Pencil Beam Scanning Proton Beam

  • Jeong, Seonghoon;Yoon, Myonggeun;Chung, Kwangzoo;Han, Youngyih;Lim, Do Hoon;Choi, Doo Ho
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.22-26
    • /
    • 2017
  • We have developed an analytic software that can easily analyze the spot position and width of proton beam therapy nozzles in a periodic quality assurance. The developed software consists of an image processing method that conducts an analysis using center-of-spot geometry and a Gaussian fitting method that conducts an analysis through Gaussian fitting. By using the software, an analysis of 210 proton spots with energies 150, 190, and 230 MeV showed a deviation of approximately 3% from the mean. The software we developed to analyze proton spot positions and widths provides an accurate analysis and reduces the time for analysis.

The Variation in Chromaticity of Optical System having the Truncated Incident Beam (입사광의 단락된 정도에 따른 광학계의 색도 변화)

  • Park, Seong Jong;Chung, Chang Sub;Sim, Sang Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • In this paper, we use the C light which is a daylight and consider the incident beam having the Gaussian amplitude. We investigated the illuminance distributions and the variation in chromaticity of optical system having the truncated Gaussian amplitude on the focal plane and along the optical axis using the C light source. We also use the three sensitivity functions of human eye(CIE 1931) for wavelengths which are from 380nm to 780nm. When the truncation grade of incident beam having Gaussian amplitude decreases, the size of central spot on the focal plane and the depth of focus along the optical axis decrease, and the variation in chromaticity on the focal plane and along the axis increases rapidly. As the illuminance on the focal plane decreases the variation in chromaticity of optical system increases rapidly, and as the depth of focus increases the variation in chromaticity of optical system decreases.

  • PDF

Comparison of Theoretical model with Experiment in Bead Shape of Laser Welding (레이저 용접의 비드 형상에 대한 실험치와 이론 결과의 비교)

  • Kim, J.D.;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.201-210
    • /
    • 1994
  • A theoretical heat-flow model incorporating with a constant moving CO$_{2}$ laser beam has been analyzed to predict depth and the shape of bead section during last beam welding. The laser beam is exponentially attenuated with an abosrption coefficient in the material. The solution can be expressed in terms of normalized variables. The experimental data were generated by usint CW 2 CO$_{2}$ laser with multi beam mode and CW 3 kW CO$_{2}$laser with Gaussian mode. The specimens were made as bead-on-plate welds for SM 10C, STS 304, STS 316, STS 420 and pure Nickel. The maximum possible penetration depth and the shape of beas section for given sources of laser power, travel speed and beam spot size can be prdicted with this model in a given material.

  • PDF

The Parametric Influence on Focused Ion Beam Processing of Silicon (집속이온빔의 공정조건이 실리콘 가공에 미치는 영향)

  • Kim, Joon-Hyun;Song, Chun-Sam;Kim, Jong-Hyeong;Jang, Dong-Young;Kim, Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.70-77
    • /
    • 2007
  • The application of focused ion beam(FIB) technology has been broadened in the fabrication of nanoscale regime. The extended application of FIB is dependent on complicated reciprocal relation of operating parameters. It is necessary for successful and efficient modifications on the surface of silicon substrate. The primary effect by Gaussian beam intensity is significantly shown from various aperture size, accelerating voltage, and beam current. Also, the secondary effect of other process factors - dwell time, pixel interval, scan mode, and pattern size has affected to etching results. For the process analysis, influence of the secondary factors on FIB micromilling process is examined with respect to sputtering depth during the milling process in silicon material. The results are analyzed by the ratio of signal to noise obtained using design of experiment in each parameter.

Shape and Chemical Composition of Laser Surface Alloyed Layer under Moving Laser Source (공정변수에 따른 레이저표면합금층의 형상 및 성분변화에 관한 연구)

  • 최정영;이창희
    • Laser Solutions
    • /
    • v.2 no.2
    • /
    • pp.8-17
    • /
    • 1999
  • This study includes a basic feature of laser surface alloying for enhancing the surface properties of materials. Effects of laser processing parameters such as beam power, beam size, scanning speed on the shape and composition of alloyed layer was simulated in case of moving beam conditions (2-dimensional numerical methods). Simulated results were compared with experiments, in which the plasma coating of 80% Ni + 20% Cr deposited on the SS41 substrate was remelted with CO2 laser with Gaussian energy distribution. Simulation and experiments revealed that the shape (dimension)and composition of laser alloyed layer were strongly dependent upon the process parameters, especially interaction time (travel speed) as compared to beam diameter, beam power and absorptivity. The shape and composition of alloyed layervaried more or less exponentially with parameters.

  • PDF

Control of Intensity Distribution Profile of Laser Beam using Beam Shaping Mask with Random Array Slits (빔셰이퍼 마스크를 이용한 레이저 빔의 강도 분포 제어)

  • Oh, Jae-Yong;Park, Deog-Su;Shin, Bo-Sung
    • Laser Solutions
    • /
    • v.15 no.2
    • /
    • pp.11-14
    • /
    • 2012
  • In this paper, we have made a proposal concerning the beam shaping mask(BSM) using random-array slits to control intensity distribution profile of laser beam and demonstrated its proprieties experimentally. When a lot of slits are set out irregularly, diffraction patterns of light does not appear but granularity patterns as a bundle of fibers appear. Intensity distribution profile is controlled by densities distribution of circular slits arrayed randomly because the number of slits and its area means amount of light energy through BSM. Namely as the number of slits in high intensity area is increased and that in low intensity area decreased, amount of light energy is same over all local parts. So gaussian intensity distribution could be changed to flat-top.

  • PDF

The Simulation of Micro Optical Cross Connect Based On Ball Lens (구형렌즈를 사용한 초소형 광 스위치에서의 Simulation)

  • Lee, Doo-Won;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.594-596
    • /
    • 2000
  • The best simulation condition for the fiber collimator that uses ball lenses was investigated. This kind of fiber collimator can be used in a Micro-Optical-Cross-Connects(MOXC). MOXC is composed of collimating ball lenses, micro mirrors and single-mode fibers. In order to design a MOXC, it is very important to calculate beam path, beam radius, divergence angle that determines the insertion loss of the MOXC. Since the beam profile from the fiber facet is not exact Gaussian profile, it was found that the simulation condition in which beam waist exists on the fiber facet, ignoring Numerical Aperture(NA), gives best agreement with the experimental results. Beam radii were measured with conventional knife edge method.

  • PDF

Modeling and Simulation of Electron-beam Lithography Process for Nano-pattern Designs using ZEP520 Photoresist (ZEP520 포토리지스트를 이용한 나노 패턴 형성을 위한 전자빔 리소그래피 공정 모델링 및 시뮬레이션)

  • Son, Myung-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.25-33
    • /
    • 2007
  • A computationally efficient and accurate Monte Carlo (MC) simulator of electron beam lithography process, which is named SCNU-EBL, has been developed for semiconductor nanometer pattern design and fabrication. The simulator is composed of a MC simulation model of electron trajectory into solid targets, an Gaussian-beam exposure simulation model, and a development simulation model of photoresist using a string model. Especially for the trajectories of incident electrons into the solid targets, the inner-shell electron scattering of an target atom and its discrete energy loss with an incident electron is efficiently modeled for multi-layer resists and heterogeneous multi-layer targets. The simulator was newly applied to the development profile simulation of ZEP520 positive photoresist for NGL(Next-Generation Lithography). The simulation of ZEP520 for electron-beam nanolithography gave a reasonable agreement with the SEM experiments of ZEP520 photoresist.

  • PDF

Numerical Simulation of Input Beam Effects on Diffractive Optical Elements (입력 빔 형태에 따른 회절광학소자에서의 빔 효율 시뮬레이션)

  • Kim, Jong-Gi;Jeong, Yun-Seop;Seo, Yong-Gon;O, Gyeong-Hwan
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.197-198
    • /
    • 2008
  • 본 논문에서는 Iterative Fourier Transform Algorithm $Method(IFTA)^{(1)}$를 사용하여 Diffractive Optical Element(DOE)를 통과한 빛의 Shape이 Input Beam의 각 조건에 따라 얼마나 원하는 형태에 가까워지는지를 Input 대비 Output의 Efficiency와 Signal to Noise Ratio(SNR) Simulation 을 통해 알아보았다. Input beam의 종류는 Gaussian, Supergaussian, Plane, Spherical, Quadratic wave 으로 하고 각각의 경우에 대해 Beam Diameter, Polarization, Wavelength를 변화시키며 DOE에서의 회절 현상을 simulation하였다. 이때 Polarization은 Linear, Circular, Elliptical 형태로 변화시켰고 Wavelength는 332.8nm에서 832.8nm까지의 범위에 대해 연구하였다. 또한 relative edge가 있을 때와 없을 때를 비교하여 가장 효율이 높은 Input Beam의 형태와 그 parameter에 대해 연구하였다.

  • PDF