• Title/Summary/Keyword: Gaussian beam

Search Result 231, Processing Time 0.021 seconds

Crystal Growth Sensor Development of II-VI Compound Semiconductor : CdS (II-VI족 화합물 반도체의 결정성장 및 센서 개발에 관한 연구)

  • D.I. Yang;Y.J. Shin;S.Y. Lim;Y.D. Choi
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.126-133
    • /
    • 1992
  • This study deals with the crystal growth and the optical characteristics of CdS thin films activatedby silver. CdS:Ag thin films were deposited by using an electron beam evaporation(EBE) technique in vacuumof 1.5X 10-'torr, voltage of 4 kV, current of 2.5 mA and substrate temperature of 250$^{\circ}$C CdS:Ag photoconductivefilms prepared by EBE method show high photoconductivity after annealing at about 550"c for 0.5 h in air andAr gas.The grain size of CdS:Ag thin films annealed in Ar atmosphere (1 atm) was grown over 1 ym and the thicknessof the films is 4-5 pm. The analysis of X-ray diffraction patterns shows that the crystal structures are hexagonal.The diffraction line by (00.2) plane can only be observed, indicating that c-axis of hexagonal grows preferentiallyperpendicular to the substrate. The profiles of photoluminescence spectra of CdS:Ag films show Gaussian typecurves at room temperature, the maximum peak spectral sensitivity of CdS:Ag is located at the wavelength of520 nm.We annealed CdS:Ag thin films in air and Ar vapor in order to make the CdS photoconductors having theintensive photocurrent, the broad distribution of the photocurrent spectrum and the large value of the ratioof the photocurrent (pc) to the dark current(dc). We found that CdS:Ag thin films annealed in air atmospherewas the best one.air atmosphere was the best one.

  • PDF

A Study on the Vision Sensor Using Scanning Beam for Welding Process Automation (용접자동화를 위한 주사빔을 이용한 시각센서에 관한 연구)

  • You, Won-Sang;Na, Suck-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.891-900
    • /
    • 1996
  • The vision sensor which is based on the optical triangulation theory with the laser as an auxiliary light source can detect not only the seam position but the shape of seam. In this study, a vision sensor using the scanning laser beam was investigated. To design the vision sensor which considers the reflectivity of the sensing object and satisfies the desired resolution and measuring range, the equation of the focused laser beam which has a Gaussian irradiance profile was firstly formulated, Secondly, the image formaing sequence, and thirdly the relation between the displacement in the measuring surface and the displacement in the camera plane was formulated. Therefore, the focused beam diameter in the measuring range could be determined and the influence of the relative location between the laser and camera plane could be estimated. The measuring range and the resolution of the vision sensor which was based on the Scheimpflug's condition could also be calculated. From the results mentioned above a vision sensor was developed, and an adequate calibration technique was proposed. The image processing algorithm which and recognize the center of joint and its shape informaitons was investigated. Using the developed vision sensor and image processing algorithm, the shape informations was investigated. Using the developed vision sensor and image processing algorithm, the shape informations of the vee-, butt- and lap joint were extracted.

A study on the fabrication and processing of ultra-precision diamond tools using FIB milling (FIB milling을 이용한 고정밀 다이아몬드공구 제작과 공정에 관한 연구)

  • Wi, Eun-Chan;Jung, Sung-Taek;Kim, Hyun-Jeong;Song, Ki-Hyeong;Choi, Young-Jae;Lee, Joo-Hyung;Baek, Seung-Yup
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.56-61
    • /
    • 2020
  • Recently, research for machining next-generation micro semiconductor processes and micro patterns has been actively conducted. In particular, it is applied to various industrial fields depending on the machining method in the case of FIB (Focused ion beam) milling. In this study, intends to deal with FIB milling machining technology for ultra-precision diamond tool fabrication technology. Ultra-precision diamond tools require nano-scale precision, and FIB milling is a useful method for nano-scale precision machining. However, FIB milling has a problem of Gaussian characteristics that are differently formed according to the beam current due to the input of an ion beam source, and there are process conditions to be considered, such as a side clearance angle problem of a diamond tool that is differently formed according to the tilting angle. A series of process steps for fabrication a ultra-precision diamond tool were studied and analyzed for each process. It was confirmed that the effect on the fabrication process was large depending on the spot size of the beam and the current of the beam as a result of the experimental analysis.

Role of Arbitrary Intensity Profile Laser Beam in Trapping of RBC for Phase-imaging

  • Kumar, Ranjeet;Srivastava, Vishal;Mehta, Dalip Singh;Shakher, Chandra
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.78-87
    • /
    • 2016
  • Red blood cells (RBCs) are customarily adhered to a bio-functionalised substrate to make them stationary in interferometric phase-imaging modalities. This can make them susceptible to receive alterations in innate morphology due to their own weight. Optical tweezers (OTs) often driven by Gaussian profile of a laser beam is an alternative modality to overcome contact-induced perturbation but at the same time a steeply focused laser beam might cause photo-damage. In order to address both the photo-damage and substrate adherence induced perturbations, we were motivated to stabilize the RBC in OTs by utilizing a laser beam of ‘arbitrary intensity profile’ generated by a source having cavity imperfections per se. Thus the immobilized RBC was investigated for phase-imaging with sinusoidal interferograms generated by a compact and robust Michelson interferometer which was designed from a cubic beam splitter having one surface coated with reflective material and another adjacent coplanar surface aligned against a mirror. Reflected interferograms from bilayers membrane of a trapped RBC were recorded and analyzed. Our phase-imaging set-up is limited to work in reflection configuration only because of the availability of an upright microscope. Due to RBC’s membrane being poorly reflective for visible wavelengths, quantitative information in the signal is weak and therefore, the quality of experimental results is limited in comparison to results obtained in transmission mode by various holographic techniques reported elsewhere.

Mode Size Converter based on Muitimode Fiber Taper (다중모드 광섬유 테이퍼를 이용한 모드 크기 변환기)

  • Kim, Kwang-Taek;Park, Kiu-Ha;Hyun, Woong-Keun;Jung, Yong-Min;Lee, Byeong-Ha
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.4
    • /
    • pp.280-285
    • /
    • 2007
  • Based on the multimode fiber taper, a mode size converter for effective optical beam coupling between laser and optical fiber or between the two different optical fibers has been proposed and demonstrated. The device has a multimode input end and a single mode output end. The influence of various parameters, including device structure and launching conditions, on the coupling efficiency has been theoretically analyzed. The theoretical results revealed that the gaussian beam can be coupled into a single mode fiber without considerable insertion loss. The proposed multimode fiber taper has been fabricated using heating and pulling equipment incorporating two micro-torches. Experimental results showed that an optical beam with $50\;{\mu}m$ of large beam size was effectively coupled into single mode fiber through the multimode fiber taper. The insertion loss of the device was 1.3 dB.

A Stochastic Control for Nonlinear Systems under Random Disturbance Based on a Fluid Motion (유체운동에 의한 불규칙 가진을 받는 비선형계의 확률제어)

  • Oh, Soo-Young;Kim, Yong-Kwan;Cho, Lae-Kyoung;Choi, Young-Seob;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.892-896
    • /
    • 2001
  • Investigation is performed on the stability of nonlinear system under turbulent fluid motion modelled as white noise random process, which is a preliminary result in the course of research on the characteristic and nonlinear control of the stochastic system. Adopted physical model is beam-type structure with tip-mass and main base mass. The governing equation is derived via F-P-K approach in stochastic sense. By means of Gaussian Closure method infinite dynamic moment equations due to system nonlinearity is closed to finite one. At the best of authors' knowledge, it is the first trial to design nonlinear controller by using of sliding mode technique in stochastic domain and control performance and effect in stochastic domain is studied.

  • PDF

Nonlinear refractive index measurement for amorphous $As_2S_3$ thin film by Z-scan method (Z-scan 방법에 의한 비정질 $As_2S_3$ 박막의 비선형 굴절률 측정)

  • 김성규;이영락;곽종훈;최옥식;이윤우;송재봉;서호형;이일항
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.5
    • /
    • pp.342-347
    • /
    • 1998
  • We present a theoretical analysis of Gaussian beam propagation in nonlinear Kerr media by using aberration-free approximation and Huygens-Fresnel diffraction integral and obtain a simple analytic formular for Z-scan characteristics. Z-scan experiments are carried out on amorphous $As_2S_3$ thin film and compared with the theory developed, showing good agreement. The sign and the value of ${\gamma}$ have been measured at 633 nm to be $+8.65{\times}10^{-6}\textrm{cm}^2/W$. We also measured the far-field intensity profiles, which confirm again self-focusing effect.

  • PDF

Double Exposure Laser Interference Lithography for Pattern Diversity using Ultraviolet Continuous-Wave Laser

  • Ma, Yong-Won;Park, Jun Han;Yun, Dan Hee;Gwak, Cheongyeol;Shin, Bo Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.9-14
    • /
    • 2019
  • The newly discovered properties of periodic nanoscale patterns have increasingly sparked research interests in various fields. Along this direction, it is worth mentioning that there had been rare studies conducted on interference exposure, a method of creating periodic patterns. Additionally, these few studies seemed to validate the existence of only exact quadrangle shapes and dot patterns. This study asserted the formation of wavy patterns associated to using multiple exposures of the ratio of the first exposure intensity to the second exposure intensity. Such patterns were designed and constructed herein via overlapping of two Gaussian beams relative to certain rotation angles, and with a submicron structure fabricated based on a 360-nm continuous-wave laser. Results confirmed that the proposed double exposure laser interference lithography is able to create circular, elliptical and wavy patterns with no need for complex optical components.

Computational study on prediction of electrical beam steering phenomenon of parametric array sound source (파라메트릭 어레이 음원의 전기적 빔 조향 현상 예측을 위한 수치 해석 기법 연구)

  • Been, Kyounghun;Ohm, Won-Suk;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.485-493
    • /
    • 2019
  • The parametric array phenomenon refers to the generation of a high directivity low frequency wave from a small size radiation plate using the nonlinearity of the medium. In order to improve the usability of parametric array, the beam steering method of low frequency wave is researched, and the beam steering phenomenon is predicted easily using the PD (product directivity) model. However, the PD model can only be applied to Gaussian sources under quasi-linear conditions. Also, the prediction accuracy of low frequency wave beam width is poor. In this paper, a method for predicting the beam steering characteristics of a parametric array that can overcome the limitation of the PD model is investigated. For this purpose, the numerical analysis algorithm of the KZK (Khokhlov-Zabolotskaya-Kuzentsov) equation widely used for parametric array phenomenon prediction is improved. Thus, the beam steering characteristics are calculated by applying the electrical beam steering condition and comparing experimental results. As a result, the numerical analysis using the modified KZK equation algorithm in this study confirms that the beam steering phenomenon can be predicted even in a parametric array source that does not correspond to the quasi-linear condition.

Measurement of nonlinear optical constant of organic single crystal para-toluene sulfonate prepared by slow solution evaporation method (늦은 용액증발법으로 제작한 유기단결정 para-toluene sulfonate의 비선형 광학상수 측정)

  • 황보창권
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.2
    • /
    • pp.76-85
    • /
    • 1998
  • Organic single crystal of p-toluene sulfonate(PTS) bulks and thin films were fabricated using a slow solution evaporation method. Third and fifth order nonlinear refractive indices, $n_2$and $n_3$, of PTS crystals at 1600 nm were determined by the Z-scan method and the multimode output of the PTS thin film waveguide was observed at 1350 nm. When the beam intensity is in 2-5 GW/$cm^2$, the nonlinear refractive indices are $n_{2}=6{\times}10^{-4}cm^{2}$/GW and $n_{3}=-7{\times}10^{-5}cm^{4}/GW^{2}$ and the two and three photon absorption coefficients are zero. When the beam intensity is in 5~16 GW/$cm^2$, the split-step fast Fourier transform beam propagation method simulation shows that the beam propagation in the PTS is distorted from the gaussian shape.

  • PDF