Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.11
/
pp.2721-2726
/
2014
In a MOG algorithm using the GMM to subtract background, the model parameter computation and the object classification to be performed at every pixel require a huge computation and are the chief obstacles to its uses. This paper proposes a fast MOG algorithm that partly adopts the simple model parameter computation and the object classification skip on the basis of the object prediction. The former is applied to the pixels that gives little effect on the model parameter and the latter is applied to the pixels whose object prediction is firmly trusted. In comparative experiment between the conventional and proposed algorithms using videos, the proposed algorithm carries out the simple model parameter computation and the object classification skip over 77.75% and 92.97%, respectively, nevertheless it retains more than 99.98% and 99.36% in terms of image and moving object-unit average classification accuracies, respectively.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.9
no.2
/
pp.104-109
/
2010
In this paper, we propose a user authentication technology to protect wiretapping and attacking from others in the telematics environment, which users in vehicle can use internet service in local area network via mobile device. In the proposed user authentication technology, the packet speech data is encrypted by speech-based biometric key, which is generated from the user's speech signal. Thereafter, the encrypted data packet is submitted to the information communication server(ICS). At the ICS, the speech feature of the user is reconstructed from the encrypted data packet and is compared with the preregistered speech-based biometric key for user authentication. Based on implementation of our proposed communication method, we confirm that our proposed method is secure from various attack methods.
This paper focuses on the DSP implementation of an HMM-based speech recognizer that can handle several hundred words of vocabulary size as well as speaker independency. First, we develop an HMM-based speech recognition system on the PC that operates on the frame basis with parallel processing of feature extraction and Viterbi decoding to make the processing delay as small as possible. Many techniques such as linear discriminant analysis, state-based Gaussian selection, and phonetic tied mixture model are employed for reduction of computational burden and memory size. The system is then properly optimized and compiled on the TMS320C6711 DSP for real-time operation. The implemented system uses 486kbytes of memory for data and acoustic models, and 24.5kbytes for program code. Maximum required time of 29.2ms for processing a frame of 32ms of speech validates real-time operation of the implemented system.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2010.05a
/
pp.981-984
/
2010
In this paper, we used Support Vector Machines(SVMs) as the learning method, one of Artificial Neural Network, to segregated from the continuous speech into phonemes, an initial, medial, and final sound, and then, performed continuous speech recognition from it. A Decision boundary of phoneme is determined by algorithm with maximum frequency in a short interval. Speech recognition process is performed by Continuous Hidden Markov Model(CHMM), and we compared it with another phoneme segregated from the eye-measurement. From the simulation results, we confirmed that the method, SVMs, we proposed is more effective in an initial sound than Gaussian Mixture Models(GMMs).
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.6
/
pp.1294-1301
/
2014
In this paper, separate probabilistic distribution models for voiced and unvoiced speech are estimated and utilized to improve speaker recognition performance. Also, in addition to the conventional mel-frequency cepstral coefficient, skewness, kurtosis, and harmonic-to-noise ratio are extracted and used for voiced speech intervals. Two kinds of scores for voiced and unvoiced speech are linearly fused with the optimal weight found by exhaustive search. The performance of the proposed speaker recognizer is compared with that of the conventional recognizer which uses mel-frequency cepstral coefficient and a unified probabilistic distribution function based on the Gassian mixture model. Experimental results show that the lower the number of Gaussian mixture, the greater the performance improvement by the proposed algorithm.
Kang, Ji Hoon;Kim, Bo Ram;Kim, Kyu Young;Lee, Sang Hoon
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.6
/
pp.679-686
/
2020
In this thesis, an enhanced method for the feature extraction of vocal source signals and score combination using an MCE-Based weight estimation of the score of multiple feature vectors are proposed for the performance improvement of speaker recognition systems. The proposed feature vector is composed of perceptual linear predictive cepstral coefficients, skewness, and kurtosis extracted with lowpass filtered glottal flow signals to eliminate the flat spectrum region, which is a meaningless information section. The proposed feature was used to improve the conventional speaker recognition system utilizing the mel-frequency cepstral coefficients and the perceptual linear predictive cepstral coefficients extracted with the speech signals and Gaussian mixture models. In addition, to increase the reliability of the estimated scores, instead of estimating the weight using the probability distribution of the convectional score, the scores evaluated by the conventional vocal tract, and the proposed feature are fused by the MCE-Based score combination method to find the optimal speaker. The experimental results showed that the proposed feature vectors contained valid information to recognize the speaker. In addition, when speaker recognition is performed by combining the MCE-based multiple feature parameter scores, the recognition system outperformed the conventional one, particularly in low Gaussian mixture cases.
A graph cuts method has recently attracted a lot of attentions for image segmentation, as it can globally minimize energy functions composed of data term that reflects how each pixel fits into prior information for each class and smoothness term that penalizes discontinuities between neighboring pixels. In previous approaches to graph cuts-based automatic image segmentation, GMM(Gaussian mixture models) is generally used, and means and covariance matrixes calculated by EM algorithm were used as prior information for each cluster. However, it is practicable only for clusters with a hyper-spherical or hyper-ellipsoidal shape, as the cluster was represented based on the covariance matrix centered on the mean. For arbitrary-shaped clusters, this paper proposes graph cuts-based image segmentation using mean shift analysis. As a prior information to estimate the data term, we use the set of mean trajectories toward each mode from initial means randomly selected in $L^*u^*{\upsilon}^*$ color space. Since the mean shift procedure requires many computational times, we transform features in continuous feature space into 3D discrete grid, and use 3D kernel based on the first moment in the grid, which are needed to move the means to modes. In the experiments, we investigate the problems of mean shift-based and normalized cuts-based image segmentation methods that are recently popular methods, and the proposed method showed better performance than previous two methods and graph cuts-based automatic image segmentation using GMM on Berkeley segmentation dataset.
In this paper, we propose a hybrid method which is mixed with frame selection and weighting model rank method, based on GMM(gaussian mixture model), for real-time text-independent speaker recognition system. In the system, maximum likelihood estimation was used for GMM parameter optimization, and maximum likelihood was used for recognition basically Proposed hybrid method has two steps. First, likelihood score was calculated with speaker models and test data at frame level, and the difference is calculated between the biggest likelihood value and second. And then, the frame is selected if the difference is bigger than threshold. The second, instead of calculated likelihood, weighting value is used for calculating total score at each selected frame. Cepstrum coefficient and regressive coefficient were used as feature parameters, and the database for test and training consists of several data which are collected at different time, and data for experience are selected randomly In experiments, we applied each method to baseline system, and tested. In speaker recognition experiments, proposed hybrid method has an average of 4% higher recognition accuracy than frame selection method and 1% higher than W method, implying the effectiveness of it.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.25
no.6
/
pp.365-373
/
2013
Representative tidal gauging (TG) stations are selected to cover the tidal characteristics of the Korean peninsula coastal seas, and the statistical parameters of the data are analysed from the perspective of the probability distribution at that TG station. The shape of the distribution in the Incheon and Gunsan TG stations, which are tide-dominated areas, shows two clear modes at HWONT and LWONT in the distributions, and in the Mokpo station, shows an asymmetric double peak distribution. In contrast, the frequency distribution shape shows a smoothed flat peak in the Jeju, Yeosu and Busan TG stations, and a single peak in the Pohang and Sokcho TG stations. The emersion and submersion equations suggested as the 6-parameter Gaussian mixture models in this study are accurate, and well fitted to the observed tidal elevation data. The ${\mu}_1$, ${\mu}_2$ parameters are highly correlated to the LWONT and HWONT, and the ${\sigma}_1$ and ${\sigma}_2$ parameters are also closely correlated to the mean tidal range. The ${\mu}_1$ and ${\mu}_2$ parameters coincide with the modes of the suggested probability distribution of the hourly tidal level data.
Kim, Yeon-Wook;Cho, Woo-Hyeong;Jeon, Yu-Yong;Lee, Sangmin
Journal of rehabilitation welfare engineering & assistive technology
/
v.11
no.3
/
pp.261-270
/
2017
Bad sitting postures are known to cause for a variety of diseases or physical deformation. However, it is not easy to fit right sitting posture for long periods of time. Therefore, methods of distinguishing and inducing good sitting posture have been constantly proposed. Proposed methods were image processing, using pressure sensor attached to the chair, and using the IMU (Internal Measurement Unit). The method of using IMU has advantages of simple hardware configuration and free of various constraints in measurement. In this paper, we researched on distinguishing sitting postures with a small amount of data using just one IMU. Feature extraction method was used to find data which contribution is the least for classification. Machine learning algorithms were used to find the best position to classify and we found best machine learning algorithm. Used feature extraction method was PCA(Principal Component Analysis). Used Machine learning models were five : SVM(Support Vector Machine), KNN(K Nearest Neighbor), K-means (K-means Algorithm) GMM (Gaussian Mixture Model), and HMM (Hidden Marcov Model). As a result of research, back neck is suitable position for classification because classification rate of it was highest in every model. It was confirmed that Yaw data which is one of the IMU data has the smallest contribution to classification rate using PCA and there was no changes in classification rate after removal it. SVM, KNN are suitable for classification because their classification rate are higher than the others.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.