• Title/Summary/Keyword: Gaussian Learning

Search Result 278, Processing Time 0.023 seconds

Character Level and Word Level English License Plate Recognition Using Deep-learning Neural Networks (딥러닝 신경망을 이용한 문자 및 단어 단위의 영문 차량 번호판 인식)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.19-28
    • /
    • 2020
  • Vehicle license plate recognition system is not generalized in Malaysia due to the loose character layout rule and the varying number of characters as well as the mixed capital English characters and italic English words. Because the italic English word is hard to segmentation, a separate method is required to recognize in Malaysian license plate. In this paper, we propose a mixed character level and word level English license plate recognition algorithm using deep learning neural networks. The difference of Gaussian method is used to segment character and word by generating a black and white image with emphasized character strokes and separated touching characters. The proposed deep learning neural networks are implemented on the LPR system at the gate of a building in Kuala-Lumpur for the collection of database and the evaluation of algorithm performance. The evaluation results show that the proposed Malaysian English LPR can be used in commercial market with 98.01% accuracy.

The Design of Fuzzy-Neural Controller for Velocity and Azimuth Control of a Mobile Robot (이동형 로보트의 속도 및 방향제어를 위한 퍼지-신경제어기 설계)

  • Han, S.H.;Lee, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.75-86
    • /
    • 1996
  • In this paper, we propose a new fuzzy-neural network control scheme for the speed and azimuth control of a mobile robot. The proposed control scheme uses a gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frame-work of the specialized learning architecture. It is proposed a learning controller consisting of two fuzzy-neural networks based on independent reasoning and a connection net woth fixed weights to simply the fuzzy-neural network. The effectiveness of the proposed controller is illustrated by performing the computer simulation for a circular trajectory tracking of a mobile robot driven by two independent wheels.

  • PDF

A Variance Learning Neural Network for Confidence Estimation (신뢰도 추정을 위한 분산 학습 신경 회로망)

  • Cho, Young B.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.121-127
    • /
    • 1997
  • Multilayer feedforward networks may be applied to identify the deterministic relationship between input and output data. When the results from the network require a high level of assurance, consideration of the stochastic relationship between the input and output data may be very important. Variance is one of the effective parameters to deal with the stochastic relationship. This paper presents a new algroithm for a multilayer feedforward network to learn the variance of dispersed data without preliminary calculation of variance. In this paper, the network with this learning algorithm is named as a variance learning neural network(VALEAN). Computer simulation examples are utilized for the demonstration and the evaluation of VALEAN.

  • PDF

Classification of COVID-19 Disease: A Machine Learning Perspective

  • Kinza Sardar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.107-112
    • /
    • 2024
  • Nowadays the deadly virus famous as COVID-19 spread all over the world starts from the Wuhan China in 2019. This disease COVID-19 Virus effect millions of people in very short time. There are so many symptoms of COVID19 perhaps the Identification of a person infected with COVID-19 virus is really a difficult task. Moreover it's a challenging task to identify whether a person or individual have covid test positive or negative. We are developing a framework in which we used machine learning techniques..The proposed method uses DecisionTree, KNearestNeighbors, GaussianNB, LogisticRegression, BernoulliNB , RandomForest , Machine Learning methods as the classifier for diagnosis of covid ,however, 5-fold and 10-fold cross-validations were applied through the classification process. The experimental results showed that the best accuracy obtained from Decision Tree classifiers. The data preprocessing techniques have been applied for improving the classification performance. Recall, accuracy, precision, and F-score metrics were used to evaluate the classification performance. In future we will improve model accuracy more than we achieved now that is 93 percent by applying different techniques

A high-density gamma white spots-Gaussian mixture noise removal method for neutron images denoising based on Swin Transformer UNet and Monte Carlo calculation

  • Di Zhang;Guomin Sun;Zihui Yang;Jie Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.715-727
    • /
    • 2024
  • During fast neutron imaging, besides the dark current noise and readout noise of the CCD camera, the main noise in fast neutron imaging comes from high-energy gamma rays generated by neutron nuclear reactions in and around the experimental setup. These high-energy gamma rays result in the presence of high-density gamma white spots (GWS) in the fast neutron image. Due to the microscopic quantum characteristics of the neutron beam itself and environmental scattering effects, fast neutron images typically exhibit a mixture of Gaussian noise. Existing denoising methods in neutron images are difficult to handle when dealing with a mixture of GWS and Gaussian noise. Herein we put forward a deep learning approach based on the Swin Transformer UNet (SUNet) model to remove high-density GWS-Gaussian mixture noise from fast neutron images. The improved denoising model utilizes a customized loss function for training, which combines perceptual loss and mean squared error loss to avoid grid-like artifacts caused by using a single perceptual loss. To address the high cost of acquiring real fast neutron images, this study introduces Monte Carlo method to simulate noise data with GWS characteristics by computing the interaction between gamma rays and sensors based on the principle of GWS generation. Ultimately, the experimental scenarios involving simulated neutron noise images and real fast neutron images demonstrate that the proposed method not only improves the quality and signal-to-noise ratio of fast neutron images but also preserves the details of the original images during denoising.

Area Extraction of License Plates Using a Artificial Neural Network (인공신경망을 이용한 번호판 영역 추출)

  • hwang, suen ki;Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.105-109
    • /
    • 2008
  • In the current study, the authors propose a method for extracting license plate regions by means of a neural network trained to output the plate.s center of gravity. The method is shown to be effective. Since the learning pattern presentation positions are defined by random numbers, a different pattern is submitted to the neural network for learning each time, which enables it to form a neural network with high universality of coverage. The article discusses issues of the optimal learning surface for a license plate covered by the learning pattern, the effect of suppression learning of the number and headlight sections, as well as the effect of learning pattern enlargement/reduction and of concentration value conversion. Results of evaluation tests based on pictures of 595 vehicles taken at an underground parking garage demonstrated detection rates of 98.5%.

  • PDF

Impact parameter prediction of a simulated metallic loose part using convolutional neural network

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Kyungmo;Yu, Yongkyun;Eom, Joseph
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1199-1209
    • /
    • 2021
  • The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remains an extremely important issue. It is essential to develop a methodology for the localization and mass estimation of loose parts owing to the high prediction error of conventional methods. An effective approach is presented for the localization and mass estimation of a loose part using machine-learning and deep-learning algorithms. First, a methodology was developed to estimate both the impact location and the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of a simulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussian process, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the training data was also investigated. The high performance obtained in this study shows that the proposed methodology using an FEA-based database and deep learning is useful for localization and mass estimation of loose parts on site.

Efficient Large Dataset Construction using Image Smoothing and Image Size Reduction

  • Jaemin HWANG;Sac LEE;Hyunwoo LEE;Seyun PARK;Jiyoung LIM
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.17-24
    • /
    • 2023
  • With the continuous growth in the amount of data collected and analyzed, deep learning has become increasingly popular for extracting meaningful insights from various fields. However, hardware limitations pose a challenge for achieving meaningful results with limited data. To address this challenge, this paper proposes an algorithm that leverages the characteristics of convolutional neural networks (CNNs) to reduce the size of image datasets by 20% through smoothing and shrinking the size of images using color elements. The proposed algorithm reduces the learning time and, as a result, the computational load on hardware. The experiments conducted in this study show that the proposed method achieves effective learning with similar or slightly higher accuracy than the original dataset while reducing computational and time costs. This color-centric dataset construction method using image smoothing techniques can lead to more efficient learning on CNNs. This method can be applied in various applications, such as image classification and recognition, and can contribute to more efficient and cost-effective deep learning. This paper presents a promising approach to reducing the computational load and time costs associated with deep learning and provides meaningful results with limited data, enabling them to apply deep learning to a broader range of applications.

Blind Image Quality Assessment on Gaussian Blur Images

  • Wang, Liping;Wang, Chengyou;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.448-463
    • /
    • 2017
  • Multimedia is a ubiquitous and indispensable part of our daily life and learning such as audio, image, and video. Objective and subjective quality evaluations play an important role in various multimedia applications. Blind image quality assessment (BIQA) is used to indicate the perceptual quality of a distorted image, while its reference image is not considered and used. Blur is one of the common image distortions. In this paper, we propose a novel BIQA index for Gaussian blur distortion based on the fact that images with different blur degree will have different changes through the same blur. We describe this discrimination from three aspects: color, edge, and structure. For color, we adopt color histogram; for edge, we use edge intensity map, and saliency map is used as the weighting function to be consistent with human visual system (HVS); for structure, we use structure tensor and structural similarity (SSIM) index. Numerous experiments based on four benchmark databases show that our proposed index is highly consistent with the subjective quality assessment.

Sidewalk Gaseous Pollutants Estimation Through UAV Video-based Model

  • Omar, Wael;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • As unmanned aerial vehicle (UAV) technology grew in popularity over the years, it was introduced for air quality monitoring. This can easily be used to estimate the sidewalk emission concentration by calculating road traffic emission factors of different vehicle types. These calculations require a simulation of the spread of pollutants from one or more sources given for estimation. For this purpose, a Gaussian plume dispersion model was developed based on the US EPA Motor Vehicle Emissions Simulator (MOVES), which provides an accurate estimate of fuel consumption and pollutant emissions from vehicles under a wide range of user-defined conditions. This paper describes a methodology for estimating emission concentration on the sidewalk emitted by different types of vehicles. This line source considers vehicle parameters, wind speed and direction, and pollutant concentration using a UAV equipped with a monocular camera. All were sampled over an hourly interval. In this article, the YOLOv5 deep learning model is developed, vehicle tracking is used through Deep SORT (Simple Online and Realtime Tracking), vehicle localization using a homography transformation matrix to locate each vehicle and calculate the parameters of speed and acceleration, and ultimately a Gaussian plume dispersion model was developed to estimate the CO, NOx concentrations at a sidewalk point. The results demonstrate that these estimated pollutants values are good to give a fast and reasonable indication for any near road receptor point using a cheap UAV without installing air monitoring stations along the road.