• Title/Summary/Keyword: Gaussian Learning

Search Result 278, Processing Time 0.038 seconds

Intelligent Control of Mobile robot Using Fuzzy Neural Network Control Method (퍼지-신경망 제어기법을 이용한 Mobile Robot의 지능제어)

  • 정동연;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Data-Driven Batch Processing for Parameter Calibration of a Sensor System (센서 시스템의 매개변수 교정을 위한 데이터 기반 일괄 처리 방법)

  • Kyuman Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.475-480
    • /
    • 2023
  • When modeling a sensor system mathematically, we assume that the sensor noise is Gaussian and white to simplify the model. If this assumption fails, the performance of the sensor model-based controller or estimator degrades due to incorrect modeling. In practice, non-Gaussian or non-white noise sources often arise in many digital sensor systems. Additionally, the noise parameters of the sensor model are not known in advance without additional noise statistical information. Moreover, disturbances or high nonlinearities often cause unknown sensor modeling errors. To estimate the uncertain noise and model parameters of a sensor system, this paper proposes an iterative batch calibration method using data-driven machine learning. Our simulation results validate the calibration performance of the proposed approach.

Servo-Writing Method using Feedback Error Learning Neural Networks for HDD (피드백 오차 학습 신경회로망을 이용한 하드디스크 서보정보 기록 방식)

  • Kim, Su-Hwan;Chung, Chung-Choo;Shim, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.699-701
    • /
    • 2004
  • This paper proposes the algorithm of servo- writing based on feedback error learning neural networks. The controller consists of feedback controller using PID and feedforward controller using gaussian radial basis function network. Because the RBFNs are trained by on-line rule, the controller has adaptation capability. The performance of the proposed controller is compared to that of conventional PID controller. Proposed algorithm shows better performance than PID controller.

  • PDF

Performance Evaluation of U-net Deep Learning Model for Noise Reduction according to Various Hyper Parameters in Lung CT Images (폐 CT 영상에서의 노이즈 감소를 위한 U-net 딥러닝 모델의 다양한 학습 파라미터 적용에 따른 성능 평가)

  • Min-Gwan Lee;Chanrok Park
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.709-715
    • /
    • 2023
  • In this study, the performance evaluation of image quality for noise reduction was implemented using the U-net deep learning architecture in computed tomography (CT) images. In order to generate input data, the Gaussian noise was applied to ground truth (GT) data, and datasets were consisted of 8:1:1 ratio of train, validation, and test sets among 1300 CT images. The Adagrad, Adam, and AdamW were used as optimizer function, and 10, 50 and 100 times for number of epochs were applied. In addition, learning rates of 0.01, 0.001, and 0.0001 were applied using the U-net deep learning model to compare the output image quality. To analyze the quantitative values, the peak signal to noise ratio (PSNR) and coefficient of variation (COV) were calculated. Based on the results, deep learning model was useful for noise reduction. We suggested that optimized hyper parameters for noise reduction in CT images were AdamW optimizer function, 100 times number of epochs and 0.0001 learning rates.

Adaptive Background Modeling for Crowded Scenes (혼잡한 환경에 적합한 적응적인 배경모델링 방법)

  • Lee, Gwang-Gook;Song, Su-Han;Ka, Kee-Hwan;Yoon, Ja-Young;Kim, Jae-Jun;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.597-609
    • /
    • 2008
  • Due to the recursive updating nature of background model, previous background modeling methods are often perturbed by crowd scenes where foreground pixels occurs more frequently than background pixels. To resolve this problem, an adaptive background modeling method, which is based on the well-known Gaussian mixture background model, is proposed. In the proposed method, the learning rate of background model is adaptively adjusted with respect to the crowdedness of the scene. Consequently, the learning process is suppressed in crowded scene to maintain proper background model. Experiments on real dataset revealed that the proposed method could perform background subtraction effectively even in crowd situation while the performance is almost the same to the previous method in normal scenes. Also, the F-measure was increased by 5-10% compared to the previous background modeling methods in the video of crowded situations.

  • PDF

Evaluating flexural strength of concrete with steel fibre by using machine learning techniques

  • Sharma, Nitisha;Thakur, Mohindra S.;Upadhya, Ankita;Sihag, Parveen
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-220
    • /
    • 2021
  • In this study, potential of three machine learning techniques i.e., M5P, Support vector machines and Gaussian processes were evaluated to find the best algorithm for the prediction of flexural strength of concrete mix with steel fibre. The study comprises the comparison of results obtained from above-said techniques for given dataset. The dataset consists of 124 observations from past research studies and this dataset is randomly divided into two subsets namely training and testing datasets with (70-30)% proportion by weight. Cement, fine aggregates, coarse aggregates, water, super plasticizer/ high-range water reducer, steel fibre, fibre length and curing days were taken as input parameters whereas flexural strength of the concrete mix was taken as the output parameter. Performance of the techniques was checked by statistic evaluation parameters. Results show that the Gaussian process technique works better than other techniques with its minimum error bandwidth. Statistical analysis shows that the Gaussian process predicts better results with higher coefficient of correlation value (0.9138) and minimum mean absolute error (1.2954) and Root mean square error value (1.9672). Sensitivity analysis proves that steel fibre is the significant parameter among other parameters to predict the flexural strength of concrete mix. According to the shape of the fibre, the mixed type performs better for this data than the hooked shape of the steel fibre, which has a higher CC of 0.9649, which shows that the shape of fibers do effect the flexural strength of the concrete. However, the intricacy of the mixed fibres needs further investigations. For future mixes, the most favorable range for the increase in flexural strength of concrete mix found to be (1-3)%.

A Study on the Soiution of Inverse Kinematic of Manipulator using Self-Organizing Neural Network and Fuzzy Compensator (퍼지 보상기와 자기구성 신경회로망을 이용한 매니퓰레이터의 역기구학 해에 관한 연구)

  • 김동희;이수흠;신위재
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.79-85
    • /
    • 2001
  • We obtain a solution of inverse kinematic of 3 axis manipulator by using a self-organizing neral network(SONN) with a fuzzy compensator. The self-organizing neural network using the gaussian potential function as the activation function has one hidden layer in the first learning time. The network obtains the optimal number of node by increasing the number of hidden layer node through the learning, and the fuzzy compensator has the optimal loaming rate of neutral network. In this results, we can confirmed that the learning rate is improved and the rapid convergence to the steady-state.

  • PDF

Improved Speed of Convergence in Self-Organizing Map using Dynamic Approximate Curve (동적 근사곡선을 이용한 자기조직화 지도의 수렴속도 개선)

  • Kil, Min-Wook;Kim, Gui-Joung;Lee, Geuk
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.416-423
    • /
    • 2000
  • The existing self-organizing feature map of Kohonen has weakpoint that need too much input patterns in order to converse into the learning rate and equilibrium state when it trains. Making up for the current weak point, B.Bavarian suggested the method of that distributed the learning rate such as Gaussian function. However, this method has also a disadvantage which can not achieve the right self-organizing. In this paper, we proposed the method of improving the convergence speed and the convergence rate of self-organizing feature map converting the Gaussian function into dynamic approximate curve used in when trains the self-organizing feature map.

  • PDF

Application of Gradient-Enhanced Kriging to Aerodynamic Coefficients Modeling With Physical Gradient Information (물리적 구배 정보를 이용한 공력계수 모형화를 위한 GE 크리깅의 적용)

  • Kang, Shinseong;Lee, Kyunghoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • The six-DOF aerodynamic coefficients of a missile entail inherent physical gradient constraints originated from the geometric characteristics of a cylindrical fuselage. To effectively adopt the freely available gradient information in aerodynamic coefficients modeling, this research employed gradient-enhanced (GE) Gaussian process. To investigate the accuracy of aerodynamic coefficients predicted with gradients information, we compared two Gaussian-process-based models: ordinary and GE Gaussian process models with and without gradient information, respectively. As a result, we found that GE Gaussian process models were able to comply with imposed gradient information and more accurate than ordinary Gaussian process models. However, we also found that GE Gaussian process modeling cannot handle gradient information continuously and ends up with more samples due to additional gradient information.

Fuzzy neural network modeling using hyper elliptic gaussian membership functions (초타원 가우시안 소속함수를 사용한 퍼지신경망 모델링)

  • 권오국;주영훈;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.442-445
    • /
    • 1997
  • We present a hybrid self-tuning method of fuzzy inference systems with hyper elliptic Gaussian membership functions using genetic algorithm(GA) and back-propagation algorithm. The proposed self-tuning method has two phases : one is the coarse tuning process based on GA and the other is the fine tuning process based on back-propagation. But the parameters which is obtained by a GA are near optimal solutions. In order to solve the problem in GA applications, it uses a back-propagation algorithm, which is one of learning algorithms in neural networks, to finely tune the parameters obtained by a GA. We provide Box-Jenkins time series to evaluate the advantage and effectiveness of the proposed approach and compare with the conventional method.

  • PDF