• Title/Summary/Keyword: Gaussian Learning

Search Result 278, Processing Time 0.028 seconds

Pyramidal Deep Neural Networks for the Accurate Segmentation and Counting of Cells in Microscopy Data

  • Vununu, Caleb;Kang, Kyung-Won;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.3
    • /
    • pp.335-348
    • /
    • 2019
  • Cell segmentation and counting represent one of the most important tasks required in order to provide an exhaustive understanding of biological images. Conventional features suffer the lack of spatial consistency by causing the joining of the cells and, thus, complicating the cell counting task. We propose, in this work, a cascade of networks that take as inputs different versions of the original image. After constructing a Gaussian pyramid representation of the microscopy data, the inputs of different size and spatial resolution are given to a cascade of deep convolutional autoencoders whose task is to reconstruct the segmentation mask. The coarse masks obtained from the different networks are summed up in order to provide the final mask. The principal and main contribution of this work is to propose a novel method for the cell counting. Unlike the majority of the methods that use the obtained segmentation mask as the prior information for counting, we propose to utilize the hidden latent representations, often called the high-level features, as the inputs of a neural network based regressor. While the segmentation part of our method performs as good as the conventional deep learning methods, the proposed cell counting approach outperforms the state-of-the-art methods.

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.

New Cellular Neural Networks Template for Image Halftoning based on Bayesian Rough Sets

  • Elsayed Radwan;Basem Y. Alkazemi;Ahmed I. Sharaf
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.85-94
    • /
    • 2023
  • Image halftoning is a technique for varying grayscale images into two-tone binary images. Unfortunately, the static representation of an image-half toning, wherever each pixel intensity is combined by its local neighbors only, causes missing subjective problem. Also, the existing noise causes an instability criterion. In this paper an image half-toning is represented as a dynamical system for recognizing the global representation. Also, noise is reduced based on a probabilistic model. Since image half-toning is considered as 2-D matrix with a full connected pass, this structure is recognized by the dynamical system of Cellular Neural Networks (CNNs) which is defined by its template. Bayesian Rough Sets is used in exploiting the ideal CNNs construction that synthesis its dynamic. Also, Bayesian rough sets contribute to enhance the quality of the halftone image by removing noise and discovering the effective parameters in the CNNs template. The novelty of this method lies in finding a probabilistic based technique to discover the term of CNNs template and define new learning rules for CNNs internal work. A numerical experiment is conducted on image half-toning corrupted by Gaussian noise.

Counterfactual image generation by disentangling data attributes with deep generative models

  • Jieon Lim;Weonyoung Joo
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.589-603
    • /
    • 2023
  • Deep generative models target to infer the underlying true data distribution, and it leads to a huge success in generating fake-but-realistic data. Regarding such a perspective, the data attributes can be a crucial factor in the data generation process since non-existent counterfactual samples can be generated by altering certain factors. For example, we can generate new portrait images by flipping the gender attribute or altering the hair color attributes. This paper proposes counterfactual disentangled variational autoencoder generative adversarial networks (CDVAE-GAN), specialized for data attribute level counterfactual data generation. The structure of the proposed CDVAE-GAN consists of variational autoencoders and generative adversarial networks. Specifically, we adopt a Gaussian variational autoencoder to extract low-dimensional disentangled data features and auxiliary Bernoulli latent variables to model the data attributes separately. Also, we utilize a generative adversarial network to generate data with high fidelity. By enjoying the benefits of the variational autoencoder with the additional Bernoulli latent variables and the generative adversarial network, the proposed CDVAE-GAN can control the data attributes, and it enables producing counterfactual data. Our experimental result on the CelebA dataset qualitatively shows that the generated samples from CDVAE-GAN are realistic. Also, the quantitative results support that the proposed model can produce data that can deceive other machine learning classifiers with the altered data attributes.

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang;Li Yi;Zhou Tao;Huang Yanping
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4102-4111
    • /
    • 2023
  • In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.

A Study on Condition Analysis of Revised Project Level of Gravity Port facility using Big Data (빅데이터 분석을 통한 중력식 항만시설 수정프로젝트 레벨의 상태변화 특성 분석)

  • Na, Yong Hyoun;Park, Mi Yeon;Jang, Shinwoo
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.254-265
    • /
    • 2021
  • Purpose: Inspection and diagnosis on the performance and safety through domestic port facilities have been conducted for over 20 years. However, the long-term development strategies and directions for facility renewal and performance improvement using the diagnosis history and results are not working in realistically. In particular, in the case of port structures with a long service life, there are many problems in terms of safety and functionality due to increasing of the large-sized ships, of port use frequency, and the effects of natural disasters due to climate change. Method: In this study, the maintenance history data of the gravity type quay in element level were collected, defined as big data, and a predictive approximation model was derived to estimate the pattern of deterioration and aging of the facility of project level based on the data. In particular, we compared and proposed models suitable for the use of big data by examining the validity of the state-based deterioration pattern and deterioration approximation model generated through machine learning algorithms of GP and SGP techniques. Result: As a result of reviewing the suitability of the proposed technique, it was considered that the RMSE and R2 in GP technique were 0.9854 and 0.0721, and the SGP technique was 0.7246 and 0.2518. Conclusion: This research through machine learning techniques is expected to play an important role in decision-making on investment in port facilities in the future if port facility data collection is continuously performed in the future.

A Noise-Tolerant Hierarchical Image Classification System based on Autoencoder Models (오토인코더 기반의 잡음에 강인한 계층적 이미지 분류 시스템)

  • Lee, Jong-kwan
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • This paper proposes a noise-tolerant image classification system using multiple autoencoders. The development of deep learning technology has dramatically improved the performance of image classifiers. However, if the images are contaminated by noise, the performance degrades rapidly. Noise added to the image is inevitably generated in the process of obtaining and transmitting the image. Therefore, in order to use the classifier in a real environment, we have to deal with the noise. On the other hand, the autoencoder is an artificial neural network model that is trained to have similar input and output values. If the input data is similar to the training data, the error between the input data and output data of the autoencoder will be small. However, if the input data is not similar to the training data, the error will be large. The proposed system uses the relationship between the input data and the output data of the autoencoder, and it has two phases to classify the images. In the first phase, the classes with the highest likelihood of classification are selected and subject to the procedure again in the second phase. For the performance analysis of the proposed system, classification accuracy was tested on a Gaussian noise-contaminated MNIST dataset. As a result of the experiment, it was confirmed that the proposed system in the noisy environment has higher accuracy than the CNN-based classification technique.

A Study on Optimization of Perovskite Solar Cell Light Absorption Layer Thin Film Based on Machine Learning (머신러닝 기반 페로브스카이트 태양전지 광흡수층 박막 최적화를 위한 연구)

  • Ha, Jae-jun;Lee, Jun-hyuk;Oh, Ju-young;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.55-62
    • /
    • 2022
  • The perovskite solar cell is an active part of research in renewable energy fields such as solar energy, wind, hydroelectric power, marine energy, bioenergy, and hydrogen energy to replace fossil fuels such as oil, coal, and natural gas, which will gradually disappear as power demand increases due to the increase in use of the Internet of Things and Virtual environments due to the 4th industrial revolution. The perovskite solar cell is a solar cell device using an organic-inorganic hybrid material having a perovskite structure, and has advantages of replacing existing silicon solar cells with high efficiency, low cost solutions, and low temperature processes. In order to optimize the light absorption layer thin film predicted by the existing empirical method, reliability must be verified through device characteristics evaluation. However, since it costs a lot to evaluate the characteristics of the light-absorbing layer thin film device, the number of tests is limited. In order to solve this problem, the development and applicability of a clear and valid model using machine learning or artificial intelligence model as an auxiliary means for optimizing the light absorption layer thin film are considered infinite. In this study, to estimate the light absorption layer thin-film optimization of perovskite solar cells, the regression models of the support vector machine's linear kernel, R.B.F kernel, polynomial kernel, and sigmoid kernel were compared to verify the accuracy difference for each kernel function.

Improvement of the PFCM(Possibilistic Fuzzy C-Means) Clustering Method (PFCM 클러스터링 기법의 개선)

  • Heo, Gyeong-Yong;Choe, Se-Woon;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.177-185
    • /
    • 2009
  • Cluster analysis or clustering is a kind of unsupervised learning method in which a set of data points is divided into a given number of homogeneous groups. Fuzzy clustering method, one of the most popular clustering method, allows a point to belong to all the clusters with different degrees, so produces more intuitive and natural clusters than hard clustering method does. Even more some of fuzzy clustering variants have noise-immunity. In this paper, we improved the Possibilistic Fuzzy C-Means (PFCM), which generates a membership matrix as well as a typicality matrix, using Gath-Geva (GG) method. The proposed method has a focus on the boundaries of clusters, which is different from most of the other methods having a focus on the centers of clusters. The generated membership values are suitable for the classification-type applications. As the typicality values generated from the algorithm have a similar distribution with the values of density function of Gaussian distribution, it is useful for Gaussian-type density estimation. Even more GG method can handle the clusters having different numbers of data points, which the other well-known method by Gustafson and Kessel can not. All of these points are obvious in the experimental results.

Forensic Decision of Median Filtering by Pixel Value's Gradients of Digital Image (디지털 영상의 픽셀값 경사도에 의한 미디언 필터링 포렌식 판정)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.79-84
    • /
    • 2015
  • In a distribution of digital image, there is a serious problem that is a distribution of the altered image by a forger. For the problem solution, this paper proposes a median filtering (MF) image forensic decision algorithm using a feature vector according to the pixel value's gradients. In the proposed algorithm, AR (Autoregressive) coefficients are computed from pixel value' gradients of original image then 1th~6th order coefficients to be six feature vector. And the reconstructed image is produced by the solution of Poisson's equation with the gradients. From the difference image between original and its reconstructed image, four feature vector (Average value, Max. value and the coordinate i,j of Max. value) is extracted. Subsequently, Two kinds of the feature vector combined to 10 Dim. feature vector that is used in the learning of a SVM (Support Vector Machine) classification for MF (Median Filtering) detector of the altered image. On the proposed algorithm of the median filtering detection, compare to MFR (Median Filter Residual) scheme that had the same 10 Dim. feature vectors, the performance is excellent at Unaltered, Averaging filtering ($3{\times}3$) and JPEG (QF=90) images, and less at Gaussian filtering ($3{\times}3$) image. However, in the measured performances of all items, AUC (Area Under Curve) by the sensitivity and 1-specificity is approached to 1. Thus, it is confirmed that the grade evaluation of the proposed algorithm is 'Excellent (A)'.