With big data analysis, companies use the customized marketing strategy based on customer's information. However, because of the concerns about privacy issue and identity theft, people start erasing their personal information or changing the privacy settings on social network site. Facebook, the most used social networking site, has the feature called 'Likes' which can be used as a tool to predict user's demographic profiles, such as sex and age range. To make accurate analysis model for the study, 'Likes' data has been processed by using Gaussian RBF and nFactors for dimensionality reduction. With random Forest and 5-fold cross-validation, the result shows that sex has 75% and age has 97.85% accuracy rate. From this study, we expect to provide an useful guideline for companies and marketers who are suffering to collect customers' data.
Journal of the Institute of Convergence Signal Processing
/
v.4
no.3
/
pp.49-54
/
2003
In this paper, we propose a controller with the self-organizing neural network compensator for compensating PID controller's response. PID controller has simple design method but needs a lot of trials and errors to determine coefficients. A neural network control method does not have optimal structure as the parameters are pre-specified by designers. In this paper, to solve this problem, we use a self-organizing neural network which has Back Propagation Network algorithm using a Gaussian Potential Function as an activation function of hidden layer nodes for compensating PID controller's output. Self-Organizing Neural Network's learning is proceeded by Gaussian Function's Mean, Variance and number which are automatically adjusted. As the results of simulation through the second order plant, we confirmed that the proposed controller get a good response compare with a PID controller. And we implemented the of controller performance hydraulic servo motor system using the DSP processor. Then we observed an experimental results.
We present a supervised learning method that estimates the simulation parameters required to simulate the fabric from the static drape shape of a given fabric sample. The static drape shape was inspired by Cusick's drape, which is used in the apparel industry to classify fabrics according to their mechanical properties. The input vector of the training model consists of the feature vector extracted from the static drape and the density value of a fabric specimen. The output vector consists of six simulation parameters that have a significant influence on deriving the corresponding drape result. To generate a plausible and unbiased training data set, we first collect simulation parameters for 400 knit fabrics and generate a Gaussian Mixed Model (GMM) generation model from them. Next, a large number of simulation parameters are randomly sampled from the GMM model, and cloth simulation is performed for each sampled simulation parameter to create a virtual static drape. The generated training data is fitted with a log-linear regression model. To evaluate our method, we check the accuracy of the training results with a test data set and compare the visual similarity of the simulated drapes.
Xulin Hu;Junling Wang;Jianwen Huo;Ying Zhou;Yunlei Guo;Li Hu
Nuclear Engineering and Technology
/
v.56
no.4
/
pp.1153-1164
/
2024
In recent years, unmanned ground vehicles (UGVs) have been used to search for lost or stolen radioactive sources to avoid radiation exposure for operators. To achieve autonomous localization of radioactive sources, the UGVs must have the ability to automatically determine the next radiation measurement location instead of following a predefined path. Also, the radiation field of radioactive sources has to be reconstructed or inverted utilizing discrete measurements to obtain the radiation intensity distribution in the area of interest. In this study, we propose an effective source localization framework and method, in which UGVs are able to autonomously explore in the radiation area to determine the location of radioactive sources through an iterative process: path planning, radiation field reconstruction and estimation of source location. In the search process, the next radiation measurement point of the UGVs is fully predicted by the design path planning algorithm. After obtaining the measurement points and their radiation measurements, the radiation field of radioactive sources is reconstructed by the Gaussian process regression (GPR) model based on machine learning method. Based on the reconstructed radiation field, the locations of radioactive sources can be determined by the peak analysis method. The proposed method is verified through extensive simulation experiments, and the real source localization experiment on a Cs-137 point source shows that the proposed method can accurately locate the radioactive source with an error of approximately 0.30 m. The experimental results reveal the important practicality of our proposed method for source autonomous localization tasks.
Journal of rehabilitation welfare engineering & assistive technology
/
v.11
no.1
/
pp.53-62
/
2017
In this paper, we present the score classification accuracy of BBS(Berg Balance Scale) which is the most commonly used balance evaluation tool using machine learning. Data acquisition was performed using the Noraxon system and an inertial sensor of Noraxon system was attached to the body in 8 locations (left and right ankle, left and right upper buttocks, left and right wrists, back, forehead). Based on the 3-axis accelerometer of the inertial sensor, the feature vector STFT(Short Time Fourier Transform) and SAM(Signal Area Magnitude) were extracted. Then, the items of the BBS were divided into static movement and dynamic movement depending on the operation characteristics, and the feature vectors were selected according to the sensor attachment positions which affect the score for each item of the BBS. Feature vectors selected for each item of BBS were classified using GMM(Gaussian Mixture Model). As a result of the accuracy calculation for 40 subjects, 55.5%, 72.2%, 87.5%, 50%, 35.1%, 62.5%, 43.3%, 58.6%, 60.7%, 33.3%, 44.8%, 89.2%, 51.8%, 85.1%, respectively.
Over the past few years, user needs in the smartphone application market have been shifted from diversity toward intelligence. Here, we propose a novel cognitive agent that plans the daily routines of users using the lifelog data collected by the smart phones of individuals. The proposed method first employs DPGMM (Dirichlet Process Gaussian Mixture Model) to automatically extract the users' POI (Point of Interest) from the lifelog data. After extraction, the POI and other meaningful features such as GPS, the user's activity label extracted from the log data is then used to learn the patterns of the user's daily routine by POMDP (Partially Observable Markov Decision Process). To determine the significant patterns within the user's time dependent patterns, collaboration was made with the SNS application Foursquare to record the locations visited by the user and the activities that the user had performed. The method was evaluated by predicting the daily routine of seven users with 3300 feedback data. Experimental results showed that daily routine scheduling can be established after seven days of lifelogged data and feedback data have been collected, demonstrating the potential of the new method of place-time-activity coupled daily routine planning systems in the intelligence application market.
Recently, the neural network-based deep learning algorithm has dramatically improved performance compared to the classical Gaussian mixture model based hidden Markov model (GMM-HMM) automatic speech recognition (ASR) system. In addition, researches on end-to-end (E2E) speech recognition systems integrating language modeling and decoding processes have been actively conducted to better utilize the advantages of deep learning techniques. In general, E2E ASR systems consist of multiple layers of encoder-decoder structure with attention. Therefore, E2E ASR systems require data with a large amount of speech-text paired data in order to achieve good performance. Obtaining speech-text paired data requires a lot of human labor and time, and is a high barrier to building E2E ASR system. Therefore, there are previous studies that improve the performance of E2E ASR system using relatively small amount of speech-text paired data, but most studies have been conducted by using only speech-only data or text-only data. In this study, we proposed a semi-supervised training method that enables E2E ASR system to perform well in corpus in different domains by using both speech or text only data. The proposed method works effectively by adapting to different domains, showing good performance in the target domain and not degrading much in the source domain.
Journal of the Korea Society of Computer and Information
/
v.29
no.5
/
pp.21-29
/
2024
Reducing the radiation dose during CT scanning can lower the risk of radiation exposure, but not only does the image resolution significantly deteriorate, but the effectiveness of diagnosis is reduced due to the generation of noise. Therefore, noise removal from CT images is a very important and essential processing process in the image restoration. Until now, there are limitations in removing only the noise by separating the noise and the original signal in the image area. In this paper, we aim to effectively remove noise from CT images using the wavelet transform-based GAN model, that is, the WT-GAN model in the frequency domain. The GAN model used here generates images with noise removed through a U-Net structured generator and a PatchGAN structured discriminator. To evaluate the performance of the WT-GAN model proposed in this paper, experiments were conducted on CT images damaged by various noises, namely Gaussian noise, Poisson noise, and speckle noise. As a result of the performance experiment, the WT-GAN model is better than the traditional filter, that is, the BM3D filter, as well as the existing deep learning models, such as DnCNN, CDAE model, and U-Net GAN model, in qualitative and quantitative measures, that is, PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index Measure) showed excellent results.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.4
/
pp.354-358
/
2001
This paper presents a fuzzy neural network model which solves the underutilization problem. This fuzzy neural network has both stability and flexibility because it uses the control structure similar to AHT(Adaptive Resonance Theory)-l neural network. And this fuzzy nenral network does not need to initialize weights and is less sensitive to noise than ART-l neural network is. The learning rule of this fuzzy neural network is the modified and fuzzified version of Kohonen learning rule and is based on the fuzzification of leaky competitive leaming and the fuzzification of conditional probability. The similarity measure of vigilance test, which is performed after selecting a winner among output neurons, is the relative distance. This relative distance considers Euclidean distance and the relative location between a datum and the prototypes of clusters. To compare the performance of the proposed fuzzy neural network with that of Kohonen Self-Organizing Feature Map the IRIS data and Gaussian-distributed data are used.
Park, Jung-Hwan;Kim, Yoon-Sik;Chang, Tae-Suk;Yoon, En-Sup
Journal of Institute of Control, Robotics and Systems
/
v.6
no.12
/
pp.1113-1119
/
2000
To operate a process plant safely and economically, process monitoring is very important. Process monitoring is the task to identify the state of the system from sensor data. Process monitoring includes data acquisition, regulatory control, data reconciliation, fault detection, etc. This research focuses on the data recon-ciliation using scale-space filtering and fault detection using functional-link associative neural networks. Scale-space filtering is a multi-resolution signal analysis method. Scale-space filtering can extract highest frequency factors(noise) effectively. But scale-space filtering has too large calculation costs and end effect problems. This research reduces the calculation cost of scale-space filtering by applying the minimum limit to the gaussian kernel. And the end-effect that occurs at the end of the signal of the scale-space filtering is overcome by using extrapolation related with the clustering change detection method. Nonlinear principal component analysis methods using neural network have been reviewed and the separately expanded functional-link associative neural network is proposed for chemical process monitoring. The separately expanded functional-link associative neural network has better learning capabilities, generalization abilities and short learning time than the exiting-neural networks. Separately expanded functional-link associative neural network can express a statistical model similar to real process by expanding the input data separately. Combining the proposed methods-modified scale-space filtering and fault detection method using the separately expanded functional-link associative neural network-a process monitoring system is proposed in this research. the usefulness of the proposed method is proven by its application a boiler water supply unit.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.