• Title/Summary/Keyword: Gaussian Learning

Search Result 278, Processing Time 0.03 seconds

Super Resolution using Dictionary Data Mapping Method based on Loss Area Analysis (손실 영역 분석 기반의 학습데이터 매핑 기법을 이용한 초해상도 연구)

  • Han, Hyun-Ho;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.19-26
    • /
    • 2020
  • In this paper, we propose a method to analyze the loss region of the dictionary-based super resolution result learned for image quality improvement and to map the learning data according to the analyzed loss region. In the conventional learned dictionary-based method, a result different from the feature configuration of the input image may be generated according to the learning image, and an unintended artifact may occur. The proposed method estimate loss information of low resolution images by analyzing the reconstructed contents to reduce inconsistent feature composition and unintended artifacts in the example-based super resolution process. By mapping the training data according to the final interpolation feature map, which improves the noise and pixel imbalance of the estimated loss information using a Gaussian-based kernel, it generates super resolution with improved noise, artifacts, and staircase compared to the existing super resolution. For the evaluation, the results of the existing super resolution generation algorithms and the proposed method are compared with the high-definition image, which is 4% better in the PSNR (Peak Signal to Noise Ratio) and 3% in the SSIM (Structural SIMilarity Index).

Interference Cancellation Scheme of End-to-End Method in Power Line Communication System for Smart Grid (스마트 그리드 시스템을 위한 전력선 통신 시스템의 종단 간 방식의 간섭 제거 기법)

  • Seo, Sung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.41-45
    • /
    • 2019
  • In this paper, we propose the interference cancellation scheme of end-to-end method algorithm for power line communication (PLC) systems in smart grid. The proposed scheme estimates the channel noise information of receiver by applying a deep learning model at the receiver. Then, the estimated channel noise is updated in database. In the modulator, the channel noise which reduces the power line communication performance is effectively removed through interference cancellation technique. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of bit error rate (BER). From the simulation results, it is confirmed that the proposed scheme has better BER performance compared to the theoretical model based on additive white Gaussian noise. As a result, the proposed interference cancellation with deep learning improves the signal quality of PLC systems by effectively removing the channel noise. The results of the paper can be applied to PLC for smart grid and general communication systems.

Ensemble Machine Learning Model Based YouTube Spam Comment Detection (앙상블 머신러닝 모델 기반 유튜브 스팸 댓글 탐지)

  • Jeong, Min Chul;Lee, Jihyeon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.576-583
    • /
    • 2020
  • This paper proposes a technique to determine the spam comments on YouTube, which have recently seen tremendous growth. On YouTube, the spammers appeared to promote their channels or videos in popular videos or leave comments unrelated to the video, as it is possible to monetize through advertising. YouTube is running and operating its own spam blocking system, but still has failed to block them properly and efficiently. Therefore, we examined related studies on YouTube spam comment screening and conducted classification experiments with six different machine learning techniques (Decision tree, Logistic regression, Bernoulli Naive Bayes, Random Forest, Support vector machine with linear kernel, Support vector machine with Gaussian kernel) and ensemble model combining these techniques in the comment data from popular music videos - Psy, Katy Perry, LMFAO, Eminem and Shakira.

WDENet: Wavelet-based Detail Enhanced Image Denoising Network (Wavelet 기반의 영상 디테일 향상 잡음 제거 네트워크)

  • Zheng, Jun;Wee, Seungwoo;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.725-737
    • /
    • 2021
  • Although the performance of cameras is gradually improving now, there are noise in the acquired digital images from the camera, which acts as an obstacle to obtaining high-resolution images. Traditionally, a filtering method has been used for denoising, and a convolutional neural network (CNN), one of the deep learning techniques, has been showing better performance than traditional methods in the field of image denoising, but the details in images could be lost during the learning process. In this paper, we present a CNN for image denoising, which improves image details by learning the details of the image based on wavelet transform. The proposed network uses two subnetworks for detail enhancement and noise extraction. The experiment was conducted through Gaussian noise and real-world noise, we confirmed that our proposed method was able to solve the detail loss problem more effectively than conventional algorithms, and we verified that both objective quality evaluation and subjective quality comparison showed excellent results.

A Study on Recognition of Dangerous Behaviors using Privacy Protection Video in Single-person Household Environments

  • Lim, ChaeHyun;Kim, Myung Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.47-54
    • /
    • 2022
  • Recently, with the development of deep learning technology, research on recognizing human behavior is in progress. In this paper, a study was conducted to recognize risky behaviors that may occur in a single-person household environment using deep learning technology. Due to the nature of single-person households, personal privacy protection is necessary. In this paper, we recognize human dangerous behavior in privacy protection video with Gaussian blur filters for privacy protection of individuals. The dangerous behavior recognition method uses the YOLOv5 model to detect and preprocess human object from video, and then uses it as an input value for the behavior recognition model to recognize dangerous behavior. The experiments used ResNet3D, I3D, and SlowFast models, and the experimental results show that the SlowFast model achieved the highest accuracy of 95.7% in privacy-protected video. Through this, it is possible to recognize human dangerous behavior in a single-person household environment while protecting individual privacy.

An intelligent method for pregnancy diagnosis in breeding sows according to ultrasonography algorithms

  • Jung-woo Chae;Yo-han Choi;Jeong-nam Lee;Hyun-ju Park;Yong-dae Jeong;Eun-seok Cho;Young-sin, Kim;Tae-kyeong Kim;Soo-jin Sa;Hyun-chong Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.365-376
    • /
    • 2023
  • Pig breeding management directly contributes to the profitability of pig farms, and pregnancy diagnosis is an important factor in breeding management. Therefore, the need to diagnose pregnancy in sows is emphasized, and various studies have been conducted in this area. We propose a computer-aided diagnosis system to assist livestock farmers to diagnose sow pregnancy through ultrasound. Methods for diagnosing pregnancy in sows through ultrasound include the Doppler method, which measures the heart rate and pulse status, and the echo method, which diagnoses by amplitude depth technique. We propose a method that uses deep learning algorithms on ultrasonography, which is part of the echo method. As deep learning-based classification algorithms, Inception-v4, Xception, and EfficientNetV2 were used and compared to find the optimal algorithm for pregnancy diagnosis in sows. Gaussian and speckle noises were added to the ultrasound images according to the characteristics of the ultrasonography, which is easily affected by noise from the surrounding environments. Both the original and noise added ultrasound images of sows were tested together to determine the suitability of the proposed method on farms. The pregnancy diagnosis performance on the original ultrasound images achieved 0.99 in accuracy in the highest case and on the ultrasound images with noises, the performance achieved 0.98 in accuracy. The diagnosis performance achieved 0.96 in accuracy even when the intensity of noise was strong, proving its robustness against noise.

IoT Enabled Intelligent System for Radiation Monitoring and Warning Approach using Machine Learning

  • Muhammad Saifullah ;Imran Sarwar Bajwa;Muhammad Ibrahim;Mutyyba Asgher
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.135-147
    • /
    • 2023
  • Internet of things has revolutionaries every field of life due to the use of artificial intelligence within Machine Learning. It is successfully being used for the study of Radiation monitoring, prediction of Ultraviolet and Electromagnetic rays. However, there is no particular system available that can monitor and detect waves. Therefore, the present study designed in which IOT enables intelligence system based on machine learning was developed for the prediction of the radiation and their effects of human beings. Moreover, a sensor based system was installed in order to detect harmful radiation present in the environment and this system has the ability to alert the humans within the range of danger zone with a buzz, so that humans can move to a safer place. Along with this automatic sensor system; a self-created dataset was also created in which sensor values were recorded. Furthermore, in order to study the outcomes of the effect of these rays researchers used Support Vector Machine, Gaussian Naïve Bayes, Decision Trees, Extra Trees, Bagging Classifier, Random Forests, Logistic Regression and Adaptive Boosting Classifier were used. To sum up the whole discussion it is stated the results give high accuracy and prove that the proposed system is reliable and accurate for the detection and monitoring of waves. Furthermore, for the prediction of outcome, Adaptive Boosting Classifier has shown the best accuracy of 81.77% as compared with other classifiers.

Image-based Soft Drink Type Classification and Dietary Assessment System Using Deep Convolutional Neural Network with Transfer Learning

  • Rubaiya Hafiz;Mohammad Reduanul Haque;Aniruddha Rakshit;Amina khatun;Mohammad Shorif Uddin
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.158-168
    • /
    • 2024
  • There is hardly any person in modern times who has not taken soft drinks instead of drinking water. The rate of people taking soft drinks being surprisingly high, researchers around the world have cautioned from time to time that these drinks lead to weight gain, raise the risk of non-communicable diseases and so on. Therefore, in this work an image-based tool is developed to monitor the nutritional information of soft drinks by using deep convolutional neural network with transfer learning. At first, visual saliency, mean shift segmentation, thresholding and noise reduction technique, collectively known as 'pre-processing' are adopted to extract the location of drinks region. After removing backgrounds and segment out only the desired area from image, we impose Discrete Wavelength Transform (DWT) based resolution enhancement technique is applied to improve the quality of image. After that, transfer learning model is employed for the classification of drinks. Finally, nutrition value of each drink is estimated using Bag-of-Feature (BoF) based classification and Euclidean distance-based ratio calculation technique. To achieve this, a dataset is built with ten most consumed soft drinks in Bangladesh. These images were collected from imageNet dataset as well as internet and proposed method confirms that it has the ability to detect and recognize different types of drinks with an accuracy of 98.51%.

Machine Learning-Based Transactions Anomaly Prediction for Enhanced IoT Blockchain Network Security and Performance

  • Nor Fadzilah Abdullah;Ammar Riadh Kairaldeen;Asma Abu-Samah;Rosdiadee Nordin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1986-2009
    • /
    • 2024
  • The integration of blockchain technology with the rapid growth of Internet of Things (IoT) devices has enabled secure and decentralised data exchange. However, security vulnerabilities and performance limitations remain significant challenges in IoT blockchain networks. This work proposes a novel approach that combines transaction representation and machine learning techniques to address these challenges. Various clustering techniques, including k-means, DBSCAN, Gaussian Mixture Models (GMM), and Hierarchical clustering, were employed to effectively group unlabelled transaction data based on their intrinsic characteristics. Anomaly transaction prediction models based on classifiers were then developed using the labelled data. Performance metrics such as accuracy, precision, recall, and F1-measure were used to identify the minority class representing specious transactions or security threats. The classifiers were also evaluated on their performance using balanced and unbalanced data. Compared to unbalanced data, balanced data resulted in an overall average improvement of approximately 15.85% in accuracy, 88.76% in precision, 60% in recall, and 74.36% in F1-score. This demonstrates the effectiveness of each classifier as a robust classifier with consistently better predictive performance across various evaluation metrics. Moreover, the k-means and GMM clustering techniques outperformed other techniques in identifying security threats, underscoring the importance of appropriate feature selection and clustering methods. The findings have practical implications for reinforcing security and efficiency in real-world IoT blockchain networks, paving the way for future investigations and advancements.

An Efficient One Class Classifier Using Gaussian-based Hyper-Rectangle Generation (가우시안 기반 Hyper-Rectangle 생성을 이용한 효율적 단일 분류기)

  • Kim, Do Gyun;Choi, Jin Young;Ko, Jeonghan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.56-64
    • /
    • 2018
  • In recent years, imbalanced data is one of the most important and frequent issue for quality control in industrial field. As an example, defect rate has been drastically reduced thanks to highly developed technology and quality management, so that only few defective data can be obtained from production process. Therefore, quality classification should be performed under the condition that one class (defective dataset) is even smaller than the other class (good dataset). However, traditional multi-class classification methods are not appropriate to deal with such an imbalanced dataset, since they classify data from the difference between one class and the others that can hardly be found in imbalanced datasets. Thus, one-class classification that thoroughly learns patterns of target class is more suitable for imbalanced dataset since it only focuses on data in a target class. So far, several one-class classification methods such as one-class support vector machine, neural network and decision tree there have been suggested. One-class support vector machine and neural network can guarantee good classification rate, and decision tree can provide a set of rules that can be clearly interpreted. However, the classifiers obtained from the former two methods consist of complex mathematical functions and cannot be easily understood by users. In case of decision tree, the criterion for rule generation is ambiguous. Therefore, as an alternative, a new one-class classifier using hyper-rectangles was proposed, which performs precise classification compared to other methods and generates rules clearly understood by users as well. In this paper, we suggest an approach for improving the limitations of those previous one-class classification algorithms. Specifically, the suggested approach produces more improved one-class classifier using hyper-rectangles generated by using Gaussian function. The performance of the suggested algorithm is verified by a numerical experiment, which uses several datasets in UCI machine learning repository.