• Title/Summary/Keyword: Gaussian Learning

Search Result 278, Processing Time 0.025 seconds

Efficient Multimodal Background Modeling and Motion Defection (효과적인 다봉 배경 모델링 및 물체 검출)

  • Park, Dae-Yong;Byun, Hae-Ran
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.6
    • /
    • pp.459-463
    • /
    • 2009
  • Background modeling and motion detection is the one of the most significant real time video processing technique. Until now, many researches are conducted into the topic but it still needs much time for robustness. It is more important when other algorithms are used together such as object tracking, classification or behavior understanding. In this paper, we propose efficient multi-modal background modeling methods which can be understood as simplified learning method of Gaussian mixture model. We present its validity using numerical methods and experimentally show detecting performance.

An Improved Adaptive Background Mixture Model for Real-time Object Tracking based on Background Subtraction (배경 분리 기반의 실시간 객체 추적을 위한 개선된 적응적 배경 혼합 모델)

  • Kim Young-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.187-194
    • /
    • 2005
  • The background subtraction method is mainly used for the real-time extraction and tracking of moving objects from image sequences. In the outdoor environment, there are many changeable environment factors such as gradually changing illumination, swaying trees and suddenly moving objects , which are to be considered for an adaptive processing. Normally, GMM(Gaussian Mixture Model) is used to subtract the background by considering adaptively the various changes in the scenes, and the adaptive GMMs improving the real-time Performance were Proposed and worked. This paper, for on-line background subtraction, employed the improved adaptive GMM, which uses the small constant for learning rate a and is not able to speedily adapt the suddenly movement of objects, So, this paper Proposed and evaluated the dynamic control method of a using the adaptive selection of the number of component distributions and the global variances of pixel values.

  • PDF

A Gaussian process-based response surface method for structural reliability analysis

  • Su, Guoshao;Jiang, Jianqing;Yu, Bo;Xiao, Yilong
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.549-567
    • /
    • 2015
  • A first-order moment method (FORM) reliability analysis is commonly used for structural stability analysis. It requires the values and partial derivatives of the performance to function with respect to the random variables for the design. These calculations can be cumbersome when the performance functions are implicit. A Gaussian process (GP)-based response surface is adopted in this study to approximate the limit state function. By using a trained GP model, a large number of values and partial derivatives of the performance functions can be obtained for conventional reliability analysis with a FORM, thereby reducing the number of stability analysis calculations. This dynamic renewed knowledge source can provide great assistance in improving the predictive capacity of GP during the iterative process, particularly from the view of machine learning. An iterative algorithm is therefore proposed to improve the precision of GP approximation around the design point by constantly adding new design points to the initial training set. Examples are provided to illustrate the GP-based response surface for both structural and non-structural reliability analyses. The results show that the proposed approach is applicable to structural reliability analyses that involve implicit performance functions and structural response evaluations that entail time-consuming finite element analyses.

Clustering and classification to characterize daily electricity demand (시간단위 전력사용량 시계열 패턴의 군집 및 분류분석)

  • Park, Dain;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.395-406
    • /
    • 2017
  • The purpose of this study is to identify the pattern of daily electricity demand through clustering and classification. The hourly data was collected by KPS (Korea Power Exchange) between 2008 and 2012. The time trend was eliminated for conducting the pattern of daily electricity demand because electricity demand data is times series data. We have considered k-means clustering, Gaussian mixture model clustering, and functional clustering in order to find the optimal clustering method. The classification analysis was conducted to understand the relationship between external factors, day of the week, holiday, and weather. Data was divided into training data and test data. Training data consisted of external factors and clustered number between 2008 and 2011. Test data was daily data of external factors in 2012. Decision tree, random forest, Support vector machine, and Naive Bayes were used. As a result, Gaussian model based clustering and random forest showed the best prediction performance when the number of cluster was 8.

Prediction of squeezing phenomenon in tunneling projects: Application of Gaussian process regression

  • Mirzaeiabdolyousefi, Majid;Mahmoodzadeh, Arsalan;Ibrahim, Hawkar Hashim;Rashidi, Shima;Majeed, Mohammed Kamal;Mohammed, Adil Hussein
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.11-26
    • /
    • 2022
  • One of the most important issues in tunneling, is the squeezing phenomenon. Squeezing can occur during excavation or after the construction of tunnels, which in both cases could lead to significant damages. Therefore, it is important to predict the squeezing and consider it in the early design stage of tunnel construction. Different empirical, semi-empirical and theoretical-analytical methods have been presented to determine the squeezing. Therefore, it is necessary to examine the ability of each of these methods and identify the best method among them. In this study, squeezing in a part of the Alborz service tunnel in Iran was estimated through a number of empirical, semi- empirical and theoretical-analytical methods. Among these methods, the most robust model was used to obtain a database including 300 data for training and 33 data for testing in order to develop a machine learning (ML) method. To this end, three ML models of Gaussian process regression (GPR), artificial neural network (ANN) and support vector regression (SVR) were trained and tested to propose a robust model to predict the squeezing phenomenon. A comparative analysis between the conventional and the ML methods utilized in this study showed that, the GPR model is the most robust model in the prediction of squeezing phenomenon. The sensitivity analysis of the input parameters using the mutual information test (MIT) method showed that, the most sensitive parameter on the squeezing phenomenon is the tangential strain (ε_θ^α) parameter with a sensitivity score of 2.18. Finally, the GPR model was recommended to predict the squeezing phenomenon in tunneling projects. This work's significance is that it can provide a good estimation of the squeezing phenomenon in tunneling projects, based on which geotechnical engineers can take the necessary actions to deal with it in the pre-construction designs.

High-velocity ballistics of twisted bilayer graphene under stochastic disorder

  • Gupta, K.K.;Mukhopadhyay, T.;Roy, L.;Dey, S.
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.529-547
    • /
    • 2022
  • Graphene is one of the strongest, stiffest, and lightest nanoscale materials known to date, making it a potentially viable and attractive candidate for developing lightweight structural composites to prevent high-velocity ballistic impact, as commonly encountered in defense and space sectors. In-plane twist in bilayer graphene has recently revealed unprecedented electronic properties like superconductivity, which has now started attracting the attention for other multi-physical properties of such twisted structures. For example, the latest studies show that twisting can enhance the strength and stiffness of graphene by many folds, which in turn creates a strong rationale for their prospective exploitation in high-velocity impact. The present article investigates the ballistic performance of twisted bilayer graphene (tBLG) nanostructures. We have employed molecular dynamics (MD) simulations, augmented further by coupling gaussian process-based machine learning, for the nanoscale characterization of various tBLG structures with varying relative rotation angle (RRA). Spherical diamond impactors (with a diameter of 25Å) are enforced with high initial velocity (Vi) in the range of 1 km/s to 6.5 km/s to observe the ballistic performance of tBLG nanostructures. The specific penetration energy (Ep*) of the impacted nanostructures and residual velocity (Vr) of the impactor are considered as the quantities of interest, wherein the effect of stochastic system parameters is computationally captured based on an efficient Gaussian process regression (GPR) based Monte Carlo simulation approach. A data-driven sensitivity analysis is carried out to quantify the relative importance of different critical system parameters. As an integral part of this study, we have deterministically investigated the resonant behaviour of graphene nanostructures, wherein the high-velocity impact is used as the initial actuation mechanism. The comprehensive dynamic investigation of bilayer graphene under the ballistic impact, as presented in this paper including the effect of twisting and random disorder for their prospective exploitation, would lead to the development of improved impact-resistant lightweight materials.

Patent Keyword Analysis using Gamma Regression Model and Visualization

  • Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.143-149
    • /
    • 2022
  • Since patent documents contain detailed results of research and development technologies, many studies on various patent analysis methods for effective technology analysis have been conducted. In particular, research on quantitative patent analysis by statistics and machine learning algorithms has been actively conducted recently. The most used patent data in quantitative patent analysis is technology keywords. Most of the existing methods for analyzing the keyword data were models based on the Gaussian probability distribution with random variable on real space from negative infinity to positive infinity. In this paper, we propose a model using gamma probability distribution to analyze the frequency data of patent keywords that can theoretically have values from zero to positive infinity. In addition, in order to determine the regression equation of the gamma-based regression model, two-mode network is constructed to visualize the technological association between keywords. Practical patent data is collected and analyzed for performance evaluation between the proposed method and the existing Gaussian-based analysis models.

Extracting Patterns of Airport Approach Using Gaussian Mixture Models and Analyzing the Overshoot Probabilities (가우시안 혼합모델을 이용한 공항 접근 패턴 추출 및 패턴 별 과이탈 확률 분석)

  • Jaeyoung Ryu;Seong-Min Han;Hak-Tae Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.888-896
    • /
    • 2023
  • When an aircraft is landing, it is expected that the aircraft will follow a specified approach procedure and then land at the airport. However, depending on the airport situation, neighbouring aircraft or the instructions of the air traffic controller, there can be a deviation from the specified approach. Detecting aircraft approach patterns is necessary for traffic flow and flight safety, and this paper suggests clustering techniques to identify aircraft patterns in the approach segment. The Gaussian Mixture Model (GMM), one of the machine learning techniques, is used to cluster the trajectories of aircraft, and ADS-B data from aircraft landing at the Gimhae airport in 2019 are used. The aircraft trajectories are clustered on the plane, and a total of 86 approach trajectory patterns are extracted using the centroid value of each cluster. Considering the correlation between the approach procedure pattern and overshoots, the distribution of overshoots is calculated.

A biologically inspired model based on a multi-scale spatial representation for goal-directed navigation

  • Li, Weilong;Wu, Dewei;Du, Jia;Zhou, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1477-1491
    • /
    • 2017
  • Inspired by the multi-scale nature of hippocampal place cells, a biologically inspired model based on a multi-scale spatial representation for goal-directed navigation is proposed in order to achieve robotic spatial cognition and autonomous navigation. First, a map of the place cells is constructed in different scales, which is used for encoding the spatial environment. Then, the firing rate of the place cells in each layer is calculated by the Gaussian function as the input of the Q-learning process. The robot decides on its next direction for movement through several candidate actions according to the rules of action selection. After several training trials, the robot can accumulate experiential knowledge and thus learn an appropriate navigation policy to find its goal. The results in simulation show that, in contrast to the other two methods(G-Q, S-Q), the multi-scale model presented in this paper is not only in line with the multi-scale nature of place cells, but also has a faster learning potential to find the optimized path to the goal. Additionally, this method also has a good ability to complete the goal-directed navigation task in large space and in the environments with obstacles.

Analyzing nuclear reactor simulation data and uncertainty with the group method of data handling

  • Radaideh, Majdi I.;Kozlowski, Tomasz
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.287-295
    • /
    • 2020
  • Group method of data handling (GMDH) is considered one of the earliest deep learning methods. Deep learning gained additional interest in today's applications due to its capability to handle complex and high dimensional problems. In this study, multi-layer GMDH networks are used to perform uncertainty quantification (UQ) and sensitivity analysis (SA) of nuclear reactor simulations. GMDH is utilized as a surrogate/metamodel to replace high fidelity computer models with cheap-to-evaluate surrogate models, which facilitate UQ and SA tasks (e.g. variance decomposition, uncertainty propagation, etc.). GMDH performance is validated through two UQ applications in reactor simulations: (1) low dimensional input space (two-phase flow in a reactor channel), and (2) high dimensional space (8-group homogenized cross-sections). In both applications, GMDH networks show very good performance with small mean absolute and squared errors as well as high accuracy in capturing the target variance. GMDH is utilized afterward to perform UQ tasks such as variance decomposition through Sobol indices, and GMDH-based uncertainty propagation with large number of samples. GMDH performance is also compared to other surrogates including Gaussian processes and polynomial chaos expansions. The comparison shows that GMDH has competitive performance with the other methods for the low dimensional problem, and reliable performance for the high dimensional problem.