• 제목/요약/키워드: Gaussian Learning

검색결과 278건 처리시간 0.019초

Particle Swarm Optimization based on Vector Gaussian Learning

  • Zhao, Jia;Lv, Li;Wang, Hui;Sun, Hui;Wu, Runxiu;Nie, Jugen;Xie, Zhifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.2038-2057
    • /
    • 2017
  • Gaussian learning is a new technology in the computational intelligence area. However, this technology weakens the learning ability of a particle swarm and achieves a lack of diversity. Thus, this paper proposes a vector Gaussian learning strategy and presents an effective approach, named particle swarm optimization based on vector Gaussian learning. The experiments show that the algorithm is more close to the optimal solution and the better search efficiency after we use vector Gaussian learning strategy. The strategy adopts vector Gaussian learning to generate the Gaussian solution of a swarm's optimal location, increases the learning ability of the swarm's optimal location, and maintains the diversity of the swarm. The method divides the states into normal and premature states by analyzing the state threshold of the swarm. If the swarm is in the premature category, the algorithm adopts an inertia weight strategy that decreases linearly in addition to vector Gaussian learning; otherwise, it uses a fixed inertia weight strategy. Experiments are conducted on eight well-known benchmark functions to verify the performance of the new approach. The results demonstrate promising performance of the new method in terms of convergence velocity and precision, with an improved ability to escape from a local optimum.

Semi-Supervised Learning Using Kernel Estimation

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권3호
    • /
    • pp.629-636
    • /
    • 2007
  • A kernel type semi-supervised estimate is proposed. The proposed estimate is based on the penalized least squares loss and the principle of Gaussian Random Fields Model. As a result, we can estimate the label of new unlabeled data without re-computation of the algorithm that is different from the existing transductive semi-supervised learning. Also our estimate is viewed as a general form of Gaussian Random Fields Model. We give experimental evidence suggesting that our estimate is able to use unlabeled data effectively and yields good classification.

  • PDF

코사인 모듈화 된 가우스 활성화 함수를 사용한 캐스케이드 코릴레이션 학습 알고리즘의 성능 향상 (An Improvement of Performance for Cascade Correlation Learning Algorithm using a Cosine Modulated Gaussian Activation Function)

  • 이상화;송해상
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.107-115
    • /
    • 2006
  • 본 논문에서는 캐스케이드 코릴레이션 학습 알고리즘을 위한 새로운 클래스의 활성화 함수를 소개한다. 이 함수는 코사인으로 모듈화된 가우스 함수로서 편의상 이 활성화 함수를 코스가우스(CosGauss) 함수라고 칭하기로 한다. 이 함수는 기존의 시그모이드 함수(sigmoidal function), 하이퍼볼릭탄젠트 함수(hyperbolic tangent function), 가우스 함수(gaussian function)에 비해서 등성이(ridge)를 더 많이 얻을 수 있다. 이러한 등성이들로 인하여 빠른 속도로 수렴하고 패턴인식 속도를 향상 시켜서 학습 능력을 향상시킬 수 있다. 캐스케이드 코릴레이션 네트워크에 이 활성화 함수를 사용하여 중요한 기준 문제(benchmark problem)의 하나인 이중나선 문제(two spirals problem)에 대하여 실험하여 다른 활성화 함수들과 결과 값을 비교하였다.

  • PDF

Adversarial Detection with Gaussian Process Regression-based Detector

  • Lee, Sangheon;Kim, Noo-ri;Cho, Youngwha;Choi, Jae-Young;Kim, Suntae;Kim, Jeong-Ah;Lee, Jee-Hyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.4285-4299
    • /
    • 2019
  • Adversarial attack is a technique that causes a malfunction of classification models by adding noise that cannot be distinguished by humans, which poses a threat to a deep learning model. In this paper, we propose an efficient method to detect adversarial images using Gaussian process regression. Existing deep learning-based adversarial detection methods require numerous adversarial images for their training. The proposed method overcomes this problem by performing classification based on the statistical features of adversarial images and clean images that are extracted by Gaussian process regression with a small number of images. This technique can determine whether the input image is an adversarial image by applying Gaussian process regression based on the intermediate output value of the classification model. Experimental results show that the proposed method achieves higher detection performance than the other deep learning-based adversarial detection methods for powerful attacks. In particular, the Gaussian process regression-based detector shows better detection performance than the baseline models for most attacks in the case with fewer adversarial examples.

STOCHASTIC GRADIENT METHODS FOR L2-WASSERSTEIN LEAST SQUARES PROBLEM OF GAUSSIAN MEASURES

  • YUN, SANGWOON;SUN, XIANG;CHOI, JUNG-IL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권4호
    • /
    • pp.162-172
    • /
    • 2021
  • This paper proposes stochastic methods to find an approximate solution for the L2-Wasserstein least squares problem of Gaussian measures. The variable for the problem is in a set of positive definite matrices. The first proposed stochastic method is a type of classical stochastic gradient methods combined with projection and the second one is a type of variance reduced methods with projection. Their global convergence are analyzed by using the framework of proximal stochastic gradient methods. The convergence of the classical stochastic gradient method combined with projection is established by using diminishing learning rate rule in which the learning rate decreases as the epoch increases but that of the variance reduced method with projection can be established by using constant learning rate. The numerical results show that the present algorithms with a proper learning rate outperforms a gradient projection method.

정규 혼합분포를 이용한 준지도 학습 (Semi-Supervised Learning by Gaussian Mixtures)

  • 최병정;채윤석;최우영;박창이;구자용
    • 응용통계연구
    • /
    • 제21권5호
    • /
    • pp.825-833
    • /
    • 2008
  • 혼합모형을 이용한 판별분석은 다중 분류문제를 해결하는데 유용한 방법으로서 준지도 학습으로 확장될 수 있다. 본 논문에서는 정규 혼합분포를 이용한 준지도 학습 방법에서 혼합 모형의 하위 구성요소 개수 선택 기준을 연구하고자 한다. 하위 구성요소 선택 기준으로서 베이지안 정보량을 사용하였고 모의실험을 통해 이 방법의 유용성을 규명하였다.

Gaussian Blending: Improved 3D Gaussian Splatting for Model Light-Weighting and Deep Learning-Based Performance Enhancement

  • Yeong-In Lee;Jin-Nyeong Heo;Ji-Hwan Moon;Ha-Young Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권8호
    • /
    • pp.23-32
    • /
    • 2024
  • NVS는 여러 각도와 위치에서 수집한 이미지를 이용해 3차원 공간을 재현하는 연구 분야로, 증강현실, 가상현실, 자율주행, 로봇 네비게이션 등에서 중요성이 커지고 있다. 최근 주목받는 3D-GS 방법론은 기존 NeRF 보다 고품질 장면 생성, 빠른 학습 시간, 실시간 렌더링이 가능하지만, Gaussian points의 밀도 조정 과정에서 전체 Gaussian points 수의 증가로 메모리 소모량 상승과 렌더링 속도가 저하되는 문제가 있다. 이를 개선하기 위해 본 논문에서는 불필요한 Gaussian points를 제거하여 메모리 효율성을 높이는 Gaussian blending 기법과 Gaussian points 감소로 인한 표현력 손실을 최소화하는 깊이 정보 반영 손실 함수를 제안하여 모델의 성능을 보완한다. 실험 결과, Tanks & Temples 벤치마크 데이터셋에서 성능을 유지하면서 Gaussian points 수를 최대 4% 감소시키는 효과를 확인하였다. 따라서 본 논문에서 제안한 방법론은 3D-GS 모델의 경량화 가능성을 실험적으로 증명하였다.

Path-smoothing for a robot arm manipulator using a Gaussian process

  • Park, So-Youn;Lee, Ju-Jang
    • 한국산업융합학회 논문집
    • /
    • 제18권4호
    • /
    • pp.191-196
    • /
    • 2015
  • In this paper, we present a path-smoothing algorithm for a robot arm manipulator that finds the path using a joint space-based rapidly-exploring random tree. Unlike other smoothing algorithms which require complex mathematical computation, the proposed path-smoothing algorithm is done using a Gaussian process. To find the optimal hyperparameters of the Gaussian process, we use differential evolution hybridized with opposition-based learning. The simulation result indicates that the Gaussian process whose hyperparameters were optimized by hybrid differential evolution successfully smoothed the path generated by the joint space-based rapidly-exploring random tree.

Flexible Nonlinear Learning for Source Separation

  • Park, Seung-Jin
    • Journal of KIEE
    • /
    • 제10권1호
    • /
    • pp.7-15
    • /
    • 2000
  • Source separation is a statistical method, the goal of which is to separate the linear instantaneous mixtures of statistically independent sources without resorting to any prior knowledge. This paper addresses a source separation algorithm which is able to separate the mixtures of sub- and super-Gaussian sources. The nonlinear function in the proposed algorithm is derived from the generalized Gaussian distribution that is a set of distributions parameterized by a real positive number (Gaussian exponent). Based on the relationship between the kurtosis and the Gaussian exponent, we present a simple and efficient way of selecting proper nonlinear functions for source separation. Useful behavior of the proposed method is demonstrated by computer simulations.

  • PDF

폐 CT 영상에서 다양한 노이즈 타입에 따른 딥러닝 네트워크를 이용한 영상의 질 향상에 관한 연구 (Study on the Improvement of Lung CT Image Quality using 2D Deep Learning Network according to Various Noise Types)

  • 이민관;박찬록
    • 한국방사선학회논문지
    • /
    • 제18권2호
    • /
    • pp.93-99
    • /
    • 2024
  • 디지털 영상, 특히, 전산화 단층촬영 영상은 X선 신호를 디지털 영상 신호로 변환하는 과정에서 노이즈가 필수적으로 포함되기 때문에 노이즈 저감화에 대한 고려가 필수적이다. 최근, 딥러닝 모델 기반의 노이즈 감소가 가능한 연구가 수행되고 있다. 그러므로, 본 연구의 목적은 폐 CT 영상에서의 다양한 종류의 노이즈를 U-net 딥러닝 모델을 이용하여 노이즈 감소 효과를 평가하였다. 총 800장의 폐 CT 영상을 사용하였고, Adam 최적화 함수와 100회의 반복 학습 횟수, 0.0001의 학습률을 적용한 U-net 모델을 이용하였다. 노이즈를 포함한 입력 영상 생성을 위하여 Gaussian 노이즈, Poisson 노이즈, salt & pepper 노이즈, speckle 노이즈를 적용하였다. 정량적 분석 인자로 평균 제곱 오차, 최대 신호 대 잡음비, 영상의 변동계수를 사용하여 분석하였다. 결과적으로, U-net 네트워크는 다양한 노이즈 조건에서 우수한 성능을 나타냈으며 그 효용성을 입증하였다.