• Title/Summary/Keyword: Gauss-Legendre quadrature rule

Search Result 7, Processing Time 0.034 seconds

A TRIPLE MIXED QUADRATURE BASED ADAPTIVE SCHEME FOR ANALYTIC FUNCTIONS

  • Mohanty, Sanjit Kumar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.935-947
    • /
    • 2021
  • An efficient adaptive scheme based on a triple mixed quadrature rule of precision nine for approximate evaluation of line integral of analytic functions has been constructed. At first, a mixed quadrature rule SM1(f) has been formed using Gauss-Legendre three point transformed rule and five point Booles transformed rule. A suitable linear combination of the resulting rule and Clenshaw-Curtis seven point rule gives a new mixed quadrature rule SM10(f). This mixed rule is termed as triple mixed quadrature rule. An adaptive quadrature scheme is designed. Some test integrals having analytic function integrands have been evaluated using the triple mixed rule and its constituent rules in non-adaptive mode. The same set of test integrals have been evaluated using those rules as base rules in the adaptive scheme. The triple mixed rule based adaptive scheme is found to be the most effective.

NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VALUE INTEGRALS USING A PARAMETRIC RATIONAL TRANSFORMATION

  • Beong In Yun
    • The Pure and Applied Mathematics
    • /
    • v.30 no.4
    • /
    • pp.347-355
    • /
    • 2023
  • For numerical evaluation of Cauchy principal value integrals, we present a simple rational function with a parameter satisfying some reasonable conditions. The proposed rational function is employed in coordinate transformation for accelerating the accuracy of the Gauss quadrature rule. The efficiency of the proposed rational transformation method is demonstrated by the numerical result of a selected test example.

FAMILIES OF NONLINEAR TRANSFORMATIONS FOR ACCURATE EVALUATION OF WEAKLY SINGULAR INTEGRALS

  • BEONG IN YUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.3
    • /
    • pp.194-206
    • /
    • 2023
  • We present families of nonlinear transformations useful for numerical evaluation of weakly singular integrals. First, for end-point singular integrals, we define a prototype function with some appropriate features and then suggest a family of transformations. In addition, for interior-point singular integrals, we develop a family of nonlinear transformations based on the aforementioned prototype function. We take some examples to explore the efficiency of the proposed nonlinear transformations in using the Gauss-Legendre quadrature rule. From the numerical results, we can find the superiority of the proposed transformations compared to some existing transformations, especially for the integrals with high singularity strength.

THE TRAPEZOIDAL RULE WITH A NONLINEAR COORDINATE TRANSFORMATION FOR WEAKLY SINGULAR INTEGRALS

  • Yun, Beong-In
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.6
    • /
    • pp.957-976
    • /
    • 2004
  • It is well known that the application of the nonlinear coordinate transformations is useful for efficient numerical evaluation of weakly singular integrals. In this paper, we consider the trapezoidal rule combined with a nonlinear transformation $\Omega$$_{m}$(b;$\chi$), containing a parameter b, proposed first by Yun [14]. It is shown that the trapezoidal rule with the transformation $\Omega$$_{m}$(b;$\chi$), like the case of the Gauss-Legendre quadrature rule, can improve the asymptotic truncation error by using a moderately large b. By several examples, we compare the numerical results of the present method with those of some existing methods. This shows the superiority of the transformation $\Omega$$_{m}$(b;$\chi$).TEX>).

p-Version Finite Element Analysis of Anisotropic Laminated Plates considering Material-Geometric Nonlinearities (재료-기하비선형을 고려한 이방성 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.319-326
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed for the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted for in the sense of von Karman hypothesis. The material model Is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized for anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The Integrals of Legendre Polynomials we used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several comparative points of view in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic zone

  • PDF

p-Version Finite Element Analysis of Composite Laminated Plates with Geometric and Material Nonlinearities (기하 및 재료비선형을 갖는 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.491-499
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed tot the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted tot in the sense of yon Karman hypothesis. The material model is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized lot anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed P-version finite element model is demonstrated through several comparative points of iew in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic tone.

Ray Effect Analysis Using the Discrete Elements Method in X-Y Geometry (2차원 직각좌표계에서 DEM을 이용한 ray effect의 해석)

  • Choi, Ho-Sin;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.1
    • /
    • pp.43-56
    • /
    • 1992
  • As one of the methods to ameliorate the ray effects which are the nature of anomalous computational effects due to the discretization of the angular variable in discrete ordinates approximations, a computational program, named TWODET (TWO dimensional Discrete Element Transport), has developed in 2 dimensional cartesian coordinates system using the discrete elements method, in which the discrete angle quadratures are steered by the spatially dependent angular fluxes. The results of the TWODET calculation with K-2, L-3 discrete angular quadratures, in the problem of a centrally located, isotropically emitting flat source in an absorbing square, are shown to be more accurate than that of the DOT 4.3 calculation with S-10 full symmetry angular quadratures, in remedy of the ray effect at the edge flux distributions of the square. But the computing time of the TWODET is about 4 times more than that of the DOT 4.3. In the problem of vacuum boundaries just outside of the source region in an absorbing square, the results of the TWODET calculation are shown severely anomalous ray effects, due to the sudden discontinuity between the source and the vacuum, like as the results of the DOT 4.3 calculation. In the probelm of an external source in an absorbing square in which a highly absorbing medium is added, the results of the TWODET calculation with K-3, L-4 show a good ones like as, somewhat more than, that of the DOT 4.3 calculation with S-10.

  • PDF