• Title/Summary/Keyword: Gauss-Jacobi

Search Result 22, Processing Time 0.017 seconds

Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron

  • Yaylaci, Murat;Yayli, Mujgen;Yaylaci, Ecren Uzun;Olmez, Hasan;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.585-597
    • /
    • 2021
  • This paper presents a comparative study of analytical method, finite element method (FEM) and Multilayer Perceptron (MLP) for analysis of a contact problem. The problem consists of a functionally graded (FG) layer resting on a half plane and pressed with distributed load from the top. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. The problem is reduced a system of integral equation in which the contact pressure are unknown functions. The numerical solution of the integral equation was carried out with Gauss-Jacobi integration formulation. Secondly, finite element model of the problem is constituted using ANSYS software and the two-dimensional analysis of the problem is carried out. The results show that contact areas and the contact stresses obtained from FEM provide boundary conditions of the problem as well as analytical results. Thirdly, the contact problem has been extended based on the MLP. The MLP with three-layer was used to calculate the contact distances. Material properties and loading states were created by giving examples of different values were used at the training and test stages of MLP. Program code was rewritten in C++. As a result, average deviation values such as 0.375 and 1.465 was obtained for FEM and MLP respectively. The contact areas and contact stresses obtained from FEM and MLP are very close to results obtained from analytical method. Finally, this study provides evidence that there is a good agreement between three methods and the stiffness parameters has an important effect on the contact stresses and contact areas.

Dislocation in Semi-infinite Half Plane Subject to Adhesive Complete Contact with Square Wedge: Part I - Derivation of Corrective Functions (직각 쐐기와 응착접촉 하는 반무한 평판 내 전위: 제1부 - 보정 함수 유도)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.73-83
    • /
    • 2022
  • This paper is concerned with an analysis of a surface edge crack emanated from a sharp contact edge. For a geometrical model, a square wedge is in contact with a half plane whose materials are identical, and a surface perpendicular crack initiated from the contact edge exists in the half plane. To analyze this crack problem, it is necessary to evaluate the stress field on the crack line which are induced by the contact tractions and pseudo-dislocations that simulate the crack, using the Bueckner principle. In this Part I, the stress filed in the half plane due to the contact is re-summarized using an asymptotic analysis method, which has been published before by the author. Further focus is given to the stress field in the half plane due to a pseudo-edge dislocation, which will provide a stress solution due to a crack (i.e. a continuous distribution of edge dislocations) later, using the Burgers vector. Essential result of the present work is the corrective functions which modify the stress field of an infinite domain to apply for the present one which has free surfaces, and thus the infiniteness is no longer preserved. Numerical methods and coordinate normalization are used, which was developed for an edge crack problem, using the Gauss-Jacobi integration formula. The convergence of the corrective functions are investigated here. Features of the corrective functions and their application to a crack problem will be given in Part II.