• Title/Summary/Keyword: Gauss-Chebyshev quadrature

Search Result 5, Processing Time 0.023 seconds

Free Vibration Analysis of Compressive Tapered Members Resting on Elastic Foundation Using Differential Quadrature Method (미분구적법(DQM)을 이용한 탄성지반 위에 놓인 변단면 압축부재의 자유진동 해석)

  • 이병구;최규문;이태은;김무영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.629-638
    • /
    • 2002
  • This paper deals with the free vibration analysis of compressive tapered members resting on elastic foundation using the Differential Quadrature Method. Based on the differential equation subjected to the boundary conditions, adopted from the open literature, which governs the free vibrations of such member, this equation is applied to the Differential Quadrature Method. For computing natural frequencies, the numerical procedures are developed by QR Algorithm, in which the Chebyshev-Gauss-Lobatto method is used for choosing the grid points. The numerical methods developed herein for computing natural frequencies are programmed in FORTRAN code, and all solutions obtained in this study are quite agreed with those in the open literature.

On the receding contact between a two-layer inhomogeneous laminate and a half-plane

  • Liu, Zhixin;Yan, Jie;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.329-341
    • /
    • 2018
  • This paper considers the smooth receding contact problem between a homogeneous half-plane and a composite laminate composed of an inhomogeneously coated elastic layer. The inhomogeneity of the elastic modulus of the coating is approximated by an exponential function along the thickness dimension. The three-component structure is pressed together by either a concentrated force or uniform pressures applied at the top surface of the composite laminate. Both semianalytical and finite element analysis are performed to solve for the extent of contact and the contact pressure. In the semianalytical formulation, Fourier integral transformation of governing equations and boundary conditions leads to a singular integral equation of Cauchy-type, which can be numerically integrated by Gauss-Chebyshev quadrature to a desired degree of accuracy. In the finite element modeling, the functionally graded coating is divided into homogeneous sublayers and the shear modulus of each sublayer is assigned at its lower boundary following the predefined exponential variation. In postprocessing, the stresses of any node belonging to sublayer interfaces are averaged over its surrounding elements. The results obtained from the semianalytical analysis are successfully validated against literature results and those of the finite element modeling. Extensive parametric studies suggest the practicability of optimizing the receding contact peak stress and the extent of contact in multilayered structures by the introduction of functionally graded coatings.

Free Vibration Analysis of Beam-columns Resting on Pasternak Foundation by Differential Quadrature Method (미분구적법에 의한 Pasternak지반 위에 놓인 보-기둥의 자유진동 해석)

  • 이태은;이병구;강희종
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.957-962
    • /
    • 2004
  • This paper deals with the free vibration analysis of beam-columns resting on Pasternak foundation by the Differential Quadrature Method. Based on the differential equation subjected to the boundary conditions, adopted from the open literature, which governs the free vibrations of such member, this equation is applied to the Differential Quadrature Method. For computing natural frequencies, the numerical procedures are developed by QR Algorithm, in which the Chebyshev-Gauss-Lobatto method is used for choosing the grid points. The numerical methods developed herein for computing natural frequencies are programmed in FORTRAN code, and all solutions obtained in this study are quite agreed with those in the open literature.

  • PDF

Free vibration analysis of functionally graded beams with variable cross-section by the differential quadrature method based on the nonlocal theory

  • Elmeiche, Noureddine;Abbad, Hichem;Mechab, Ismail;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.737-746
    • /
    • 2020
  • This paper attempts to investigate the free vibration of functionally graded material beams with nonuniform width based on the nonlocal elasticity theory. The theoretical formulations are established following the Euler-Bernoulli beam theory, and the governing equations of motion of the system are derived from the minimum total potential energy principle using the nonlocal elasticity theory. In addition, the Differential Quadrature Method (DQM) is applied, along with the Chebyshev-Gauss-Lobatto polynomials, in order to determine the weighting coefficient matrices. Furthermore, the effects of the nonlocal parameter, cross-section area of the functionally graded material (FGM) beam and various boundary conditions on the natural frequencies are examined. It is observed that the nonlocal parameter and boundary conditions significantly influence the natural frequencies of the functionally graded material beam cross-section. The results obtained, using the Differential Quadrature Method (DQM) under various boundary conditions, are found in good agreement with analytical and numerical results available in the literature.

A parametric study on the free vibration of a functionally graded material circular plate with non-uniform thickness resting on a variable Pasternak foundation by differential quadrature method

  • Abdelbaki, Bassem M.;Ahmed, Mohamed E. Sayed;Al Kaisy, Ahmed M.
    • Coupled systems mechanics
    • /
    • v.11 no.4
    • /
    • pp.357-371
    • /
    • 2022
  • This paper presents a parametric study on the free vibration analysis of a functionally graded material (FGM) circular plate with non-uniform thickness resting on a variable Pasternak elastic foundation. The mechanical properties of the material vary in the transverse direction through the thickness of the plate according to the power-law distribution to represent the constituent components. The equation of motion of the circular plate has been carried out based on the classical plate theory (CPT), and the differential quadrature method (DQM) is employed to solve the governing equations as a semi-analytical method. The grid points are chosen based on Chebyshev-Gauss-Lobatto distribution to achieve acceptable convergence and better accuracy. The influence of geometric parameters, variable elastic foundation, and functionally graded variation for clamped and simply supported boundary conditions on the first three natural frequencies are investigated. Comparisons of results with similar studies in the literature have been presented and two-dimensional mode shapes for particular plates have been plotted to illustrate the effect of variable thickness profile.