• Title/Summary/Keyword: Gauss diagram

Search Result 9, Processing Time 0.027 seconds

Finite Type Invariants and Virtual Twist Moves of Virtual Knots

  • Jeong, Myeong-Ju
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.449-461
    • /
    • 2006
  • Generalizing twist moves of classical knots, we introduce $t(a_1,{\cdots},a_m)$-moves of virtual knots for an $m$-tuple ($a_1,{\cdots},a_m$) of nonzero integers. In [4], M. Goussarov, M. Polyak and O. Viro introduced finite type invariants of virtual knots and Gauss diagram formulae giving combinatorial presentations of finite type invariants. By using the Gauss diagram formulae for the finite type invariants of degree 2, we give a necessary condition for a virtual long knot K to be transformed to a virtual long knot K' by a finite sequence of $t(a_1,{\cdots},a_m)$-moves for an $m$-tuple ($a_1,{\cdots},a_m$) of nonzero integers with the same sign.

  • PDF

ARC SHIFT NUMBER AND REGION ARC SHIFT NUMBER FOR VIRTUAL KNOTS

  • Gill, Amrendra;Kaur, Kirandeep;Madeti, Prabhakar
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1063-1081
    • /
    • 2019
  • In this paper, we formulate a new local move on virtual knot diagram, called arc shift move. Further, we extend it to another local move called region arc shift defined on a region of a virtual knot diagram. We establish that these arc shift and region arc shift moves are unknotting operations by showing that any virtual knot diagram can be turned into trivial knot using arc shift (region arc shift) moves. Based upon the arc shift move and region arc shift move, we define two virtual knot invariants, arc shift number and region arc shift number respectively.

Magnetizing Analysis of a Convergence Purity Magnet using Preisach model and Finite Element Method (프라이자흐 모델과 유한요소법을 이용한 C.P.M의 착자 특성 해석)

  • Yoon, Tae-Ho;Kwon, Byung-Il;Park, Seung-Chan;Woo, Kyung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.11
    • /
    • pp.729-736
    • /
    • 2000
  • This paper deals with the characteristic analysis of magnetizer for convergence purity magnet by the finite element method. The analysis utilizes combined method of the time-stepped finite element analysis and the Preisach model with hysteresis phenomena. In the finite element analysis, the non-linearity and the eddy current of the magnetizing fixure and permanent-magnet are taken account. The magnetization distribution in the permanent magnet is determined by using Preisach model which are composed of Everett function table and the first order transition curves is obtained by the Vibrating Sample Magnetometer. The calculated flux density values on the surface of the permanent magnet are led to the approximated gauss density values measured by the gauss meter. As a result, winding current, copper loss, eddy current loss of the magnetizing yoke, flux plot, surface gauss plot, temperature rise of the coil and resistor variation, vector diagram of magnetization distribution are shown.

  • PDF

POLYNOMIAL INVARIANTS FOR VIRTUAL KNOTS VIA VIRTUALIZATION MOVES

  • Im, Young Ho;Kim, Sera
    • East Asian mathematical journal
    • /
    • v.36 no.5
    • /
    • pp.537-545
    • /
    • 2020
  • We investigate some polynomial invariants for virtual knots via virtualization moves. We define two types of polynomials WG(t) and S2G(t) from the definition of the index polynomial for virtual knots. And we show that they are invariants for virtual knots on the quotient ring Z[t±1]/I where I is an ideal generated by t2 - 1.

A Single Mobile Target Tracking in Voronoi-based Clustered Wireless Sensor Network

  • Chen, Jiehui;Salim, Mariam B.;Matsumoto, Mitsuji
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.17-28
    • /
    • 2011
  • Despite the fact that the deployment of sensor networks and target tracking could both be managed by taking full advantage of Voronoi diagrams, very little few have been made in this regard. In this paper, we designed an optimized barrier coverage and an energy-efficient clustering algorithm for forming Vonoroi-based Wireless Sensor Networks(WSN) in which we proposed a mobile target tracking scheme (CTT&MAV) that takes full advantage of Voronoi-diagram boundary to improve detectability. Simulations verified that CTT&MAV outperforms random walk, random waypoint, random direction and Gauss-Markov in terms of both the average hop distance that the mobile target moved before being detected and lower sensor death rate. Moreover, we demonstrate that our results are robust as realistic sensing models and also validate our observations through extensive simulations.

An Animation Speed-independent Collision Detection Algorithm (애니메이션 속도에 무관한 충돌 탐지 알고리즘)

  • 김형석
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.247-256
    • /
    • 2004
  • This paper presents an efficient collision detection algorithm the performance of which is independent of animation speed. Most of the previous collision detection algorithms are incremental and discrete methods, which find out the neighborhood of the extreme vertex at the previous time instance in order to get an extreme vertex at each time instance. However, if an object collides with another one with a high torque, then the angular speed becomes faster. Hence, the candidate by the incremental algorithms may be farther from the real extreme vertex at this time instance. Therefore, the worst time complexity nay be $O(n^2)$, where n is the number of faces. Moreover, the total time complexity of incremental algorithms is dependent on the time step size of animation because a smaller time step yields more frequent evaluation of Euclidean distance. In this paper, we propose a new method to overcome these drawbacks. We construct a spherical extreme vertex diagram on Gauss Sphere, which has geometric properties, and then generate the distance function of a polyhedron and a plane by using this diagram. In order to efficiently compute the exact collision time, we apply the interval Newton method to the distance function.

Free Vibration and Dynamic Response Analysis by Petrov-Galerkin Natural Element Method

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1881-1890
    • /
    • 2006
  • In this paper, a Petrov-Galerkin natural element method (PG-NEM) based upon the natural neighbor concept is presented for the free vibration and dynamic response analyses of two-dimensional linear elastic structures. A problem domain is discretized with a finite number of nodes and the trial basis functions are defined with the help of the Voronoi diagram. Meanwhile, the test basis functions are supported by Delaunay triangles for the accurate and easy numerical integration with the conventional Gauss quadrature rule. The numerical accuracy and stability of the proposed method are verified through illustrative numerical tests.

Conceptual Design of Electric-Pump Motor for 50kW Rocket Engine (50kW급 로켓 엔진용 전기펌프 모터의 개념 설계)

  • Kim, Hong-Kyo;Kwak, Hyun-Duck;Choi, Chang-Ho;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.175-181
    • /
    • 2018
  • Electric pump system is new technology for next generation propulsion unit. The system has simple structure which dose not need gas generator, injector and turbine and might better pump for low cost and low payload rocket. Therefore, this paper suggests conceptual design of electric-pump Permanent-Magnet Synchronous Motor (PMSM) which has 50 kW & 50,000 RPM for rocket. To satisfy the system's requirement, electromagnetic analysis is conducted for suitable inner and outer diameter of stator and rotor which uses 4000 Gauss cylinder magnet and Inconel 718 can to fix whole rotor. Futhermore, to confirm rotational vibration, rotordynamics analysis is conducted. By this analysis, Campbell diagram is printed. From the diagram, natural frequency could be determined for the only motor and dynamo meter test bench.