• Title/Summary/Keyword: Gastrointestinal symptoms

Search Result 602, Processing Time 0.021 seconds

Helicobacter pylori Infection in Children with Recurrent Abdominal Pain (소아에서 만성 반복성 복통(Recurrent Abdominal Pain)과 Helicobacter pylori 감염과의 연관성에 대한 연구)

  • Na, So Young;Seo, Jeong Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.8 no.1
    • /
    • pp.1-11
    • /
    • 2005
  • Purpose: The aim of this study was to evaluate the relationship between H. pylori infection and recurrent abdominal pain (RAP) in children and to evaluate the effects of eradication therapy on RAP. Methods: From January 1998 to January 2005, 166 children with RAP (61 male, 105 female) aged $10.0{\pm}3.3$ years were included. Upper gastrointestinal endoscopies were performed for all the patients. All H. pylori infected children (n=70) received the eradication therapy and were divided into two groups: Group Ia (n=52); eradicated, Group Ib (n=18); non-eradicated. H. pylori-negative children (n=96) were divided into three groups according to the medication: Group IIa (n=67); no medication, Group IIb (n=13); acid-suppressant, Group IIc (n=16); both acid-suppressant and antibiotics. Questionnaire for symptoms were asked at the first, 6th, 12th, 24th, and 36th months following the treatment (grade 0; completely resolved, grade 1; definitely improved, but there are occasional episodes of mild abdominal pain, grade 2; no change in the frequency and intensity of abdominal pain). Results: In about 90% of H. pylori positive children, RAP improved in the both H. pylori-eradicated and non-eradicated children in a follow-up survey. In about 75% of H. pylori-negative children, RAP also improved among in the three groups of patients regardless of medication. Conclusion: These results suggest that there was no correlations between improvement of RAP and eradication of H. pylori, and between improvement of RAP and medication. Consequently the reassurance that the children with RAP have no serious organic cause was important to improvement of RAP.

  • PDF

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.