• Title/Summary/Keyword: Gasoline of-gas

Search Result 414, Processing Time 0.023 seconds

The Performance Analysis of Otto Cycle Engine by Thermodynamic Second Law (오토 사이클 기관의 열역학 제 2법칙적 성능 해석)

  • 김성수;노승탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.94-102
    • /
    • 2001
  • The thermodynamic second law analysis, which means available energy or exergy analysis, for the indicated performance of Otto cycle engine has been carried out. Each operating process of the engine is simplified and modeled into the thermodynamic cycle. The calculation of the lost work and exergy through each process has been done with the thermodynamic relations and experimental data. The experimental data were measured from the test of single cylinder Otto cycle engine which operated at 2500 rpm, WOT(Wide Open Throttle) and MBT(Minimum advanced spark timing for Best Torque) condition with different fuels: gasoline, methanol and mixture of butane-methanol called M90. Experimental data such as cylinder pressure, air and fuel flow rate, exhaust gas temperature, inlet gas temperature and etc. were used for the analysis. The proposed model and procedure of the analysis are verified through the comparison of the work done in the study with experimental results. The calculated results show that the greatest lost work is generated during combustion process. And the lost work during expansion, exhaust, compression and induction process follows in order.

  • PDF

Evaporation Characteristics of Oil and Abundance Ratio of Hydrocarbon Compounds at Different Temperatures (온도 변수에 대한 유류의 휘발특성 및 탄화수소 화합물의 존재비에 관한 연구)

  • Choi, Jung-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1116-1123
    • /
    • 2021
  • Oil spilled in seawater undergoes physical and chemical changes as well as biological degradation through various weathering processes, such as evaporation, diffusion, dispersion, emulsification, dissolution, oxidation, and sedimentation. Evaporation is one of the most immediate and prompt weathering processes, and it has the greatest influence on majority of pollutants. In this study, the evaporation characteristics of different oil samples were studied; the volatilization characteristics of gasoline, kerosene, and diesel were compared at average seawater (25 ℃) and near-equator (35 ℃) temperatures. The oil samples were pre-treated and then collected at regular intervals. Gas chromatography-mass spectrometry analysis was performed, and the changes in the amount of the hydrocarbons were calculated.

A Study of Hydrocarbon Reduction with Photocatalysts (광촉매를 이용한 탄화수소 저감 연구)

  • 손건석;고성혁;김대중;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.47-53
    • /
    • 2000
  • To overcome the shortage of conventional TWC that is activated at high temperature, higher than 25$0^{\circ}C$, photocatalyst is considered as an new technology. Because the photocatalytic reaction of photocatalyst is not a thermo mechanical reaction, it is necessary to heat the system to start the reaction. It can be activated just by ultra violet light that includes wavelengths shorter than 400 nanometers even at ambient temperature. In this study photocatalytic reduction of hydrocarbon was investigated with a model gas test. To understand the effects of co-existence gases on the hydrocarbon reduction by photoreaction, CO and NO, $O_2, H_2O$ gases those are components of exhaust gases of gasoline engine are supplied with C3H8/N2 to a photoreactor. The photoreactor contains $TiO_2$ photocatalyst powders and a UV bulb. The results show that oxygen is the most important factor to reduce HC emission with photocatalyst. Photocatalyst seems to have a good probability for automotive application to reduce cold start HC emissions.

  • PDF

A Study on the CAI Combustion Characteristics and Stratified Combustion to Extend the Operating Region Using Direct Injection Gasoline Engine (직접분사식 가솔린 엔진을 이용한 CAI 연소특성 및 운전영역 확대를 위한 성층 연소 특성에 관한 연구)

  • Lee, Chang-Hee;Choi, Young-Jong;Lim, Kyoung-Bin;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.25-31
    • /
    • 2006
  • Controlled Auto Ignition(CAI) combustion has great potential in achieving significant increase in engine efficiency, while simultaneously reducing exhaust emissions. The process itself involves the auto ignition and subsequent simultaneous combustion of a premixed charge. In this study, NVO(Negative Valve Overlap) system was applied to a CAI engine in order to use residual gas. The fuel was injected directly to the cylinder under the high temperature condition resulting from heating the intake port to initiate CAI combustion. This paper introduced the valve timing strategy and experimental set-up. From this study, the effect of engine speed and valve timing on CAI combustion and exhaust emissions was clarified. In addition, stratified charge method was used to extend CAI operating region.

Computational Approach to Improve Coolant Flow Characteristics for the SI Engine (수치해석적 접근을 통한 불꽃점화 엔진의 냉각수 유동특성 개선)

  • Lee, Sang-In;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3553-3558
    • /
    • 2009
  • This study has been conducted to improve coolant flow pattern in the gasoline engine. Flow field has been calculated for the coolant passage mainly around the exhaust ports and valves. For the original model, a flow stagnant region has existed between exhaust valves of the second cylinder. To improve coolant flow characteristics, coolant passage area has been re-modeled and optimized. Furthermore, for the improved coolant core model, coolant passage under the exhaust manifold has been added to reduce exhaust-gas temperature. It was found that the flow through a gasket plays a critical role for the flow in the cylinder head and around exhaust valves. Finally, coolant flow around exhaust valves and in the cylinder head has been improved in terms of flow rate distribution.

The Effect of Organic Solvents on the Activity for the Synthesis of 12wt% Co-based FT Catalyst (12wt% Co 담지 FT 촉매 제조시 유기용매가 촉매활성에 미치는 영향연구)

  • LEE, JIYUN;HAN, JA-RYOUNG;CHUNG, JONGTAE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.339-346
    • /
    • 2015
  • The synthesis of Fischer-Tropsch (FT) oil is the catalytic hydrogenation of CO to give a range of products, which can be used for the production of high-quality diesel fuel, gasoline and linear chemicals. This studied catalyst was prepared Cobalt-supported alumina and silica by the incipient wet impregnation of the nitrates of cobalt, promoter and organic solvent with supports. Cobalt catalysts were calcined at $350^{\circ}C$ before being loaded into the FT reactors. After the reduction of catalyst has been carried out under $450^{\circ}C$ for 24h, FT reaction of the catalyst has been carried out at GHSV of 4,000/hr under $200^{\circ}C$ and 20atm. From these experimental results, we have obtained the results as following; In case of $SiO_2$ catalysts, the activity of 12wt% $Cobalt-SiO_2$ synthesized by organic solvent was about 2 or 3 times higher than the activity of 12wt% $Cobalt-SiO_2$ catalyst synthesized without organic solvent. In particular, the activity of the $Cobalt-SiO_2$ catalyst prepared in the presence of an organic solvent P was two to three times higher than that of the $Cobalt-SiO_2$ catalyst prepared without the organic solvent. Effect of Cr and Cu metal as a promoter was found little. 200 h long-term activity test was performed with a $Co/SiO_2$ catalyst prepared in the presence of an organic solvent of Glyoxal solution.

Liquefaction Characteristics of Polypropylene-Polystyrene Mixture by Pyrolysis at Low Temperature (Polypropylene-Polystyrene 혼합물의 저온 열분해에 의한 액화특성)

  • Cho, Sung-Hyun;Kim, Chi-Hoi;Kim, Su-Ho;Lee, Bong-Hee
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2010
  • The low temperature pyrolysis of polypropylene (PP), polystyrene (PS) and polypropylene-polystyrene (PP-PS) mixture in a batch reactor at the atmospheric pressure and $450^{\circ}C$ was conducted to investigate the synergy effect of PP-PS mixture on the yield of pyrolytic oil. The pyrolysis time was varied from 20 to 80 mins. The products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Ministry of Knowledge Economy. The analysis of the product oils by GC/MS(Gas chromatography/Mass spectrometry) showed that new components were not detected by mixing of PP and PS. There was no synergy effect according to the mixing of PP and PS. Conversions and yields of PP-PS mixtures were linearly dependent on the mixing ratio of samples except for heavy oil yields. Heavy oil yields showed almost constant regardless of the mixing ratio.

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

A Study on Experimental Characteristics in Fire Investigation Techniques of Flammable Liquids (유류화재의 감식기법의 실험적 특성에 관한 연구)

  • Hwang, Taeyeon;Choi, Donmook
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.7-14
    • /
    • 2012
  • This paper is to develop analytical techniques of flammable liquids which have been used for accelerating fire in accidental fires and arsons. We tested the temperature distribution of ceiling, fire patterns on the floor, and existence of flammable liquids and a check with GC/MS about flammable liquids comparing with papers, newspapers, and clothing. Research findings are as follows. The temperature of ceiling is influenced by flame. So gasoline and thinner was observed that combustible materials would be burned by flame. The fire patten on the floor was observed that flammable liquids had specialized pattern comparing combustible materials. When combustible materials on the PVC (Polyvinyl chloride) floor was burned, they didn't react to the gas detector. But flammable liquids had opposite results. After 7 days, we identified components of fire residues with the GC/MS (Gas Chromatography/Mass Spectrometry) about existence of flammable liquids and got components of flammable liquids. Fire investigation is a complicated processes. But we understand characteristics of materials, need detail investigations, and use the GC/MS to analyse flammable materials.

An Study on Spray and Combustion Characteristics of Direct Injection LPG under Low Pressure Injection Condition (저압 분사조건에 따른 직접분사 LPG의 분무 및 연소특성 연구)

  • Hwang, Seong-Ill;Chung, Sung-Sik;Yeom, Jeong-Kuk;Lee, Jin-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • Liquefied petroleum gas is regarded as a promising alternative fuel as it is eco-friendly, has good energy efficiency and output performance, practically and has high cost competitiveness over competing fuels. In spark-ignition engine, direct injection technology improves engine volumetric efficiency apparently and operates engine using the stratified charge that has relatively higher combustion efficiency. This study designed a combustion chamber equipped with visualization system by applying gasoline direct injection engine principle. In doing so, the study recorded and analyzed ignition probability and flame propagation process of spark-ignited direct injection LPG in a digital way. The result can contribute as a basic resource widespread for spark-ignited direct injection LPG engine design and optimization extensively.