• 제목/요약/키워드: Gasoline of-gas

Search Result 416, Processing Time 0.023 seconds

An effect of ignition timing on exhausting property of LPG Engine (점화시기가 LPG 엔진의 배기특성에 미치는 영향)

  • Han, Duck-Su;Jang, Young-Min;Chun, Bong-Jun;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.39-46
    • /
    • 2006
  • As an automobile fuel, LPG has many environmental advantages compared to gasoline or diesel. However, current LPG engine which is provided with LPG fuel as gas form has lower power and worse fuel efficiency than gasoline engine. These problems of low power and bad fuel efficiency come from lower volumetric efficiency. Also there is a new rising problem of high failure ratio in an engine emission test. Although there are many factors which affect engine performance of exhaust gas emission, one believes that the fact that ECM of gasoline engine is used for LPG engine when retrofitting gasoline engine to LPG engine is one of the main problems, which lower engine power and emit more noxious gas due to wrong ignition timing. To solve these problems, one studied the effects of ignition timing on the exhaust gas to find out the optimum condition of ignition timing. The experimental results show that noxious exhaust gas is reduced and engine power is increased if the optimum control of ignition timing is applied in accordance to the revolution speed of engine.

  • PDF

Emissions and Combustion Characteristics of LPG HCCI Engine (LPG 예혼합 압축 착화 엔진의 배기가스 및 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.149-156
    • /
    • 2006
  • This paper investigates the steady state combustion characteristics of LPG homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out the benefits in exhaust gas emissions. VVT is one of the attractive ways to control HCCI engine. Hot internal residual gas which is controlled by VVT device, makes fuel is evaporated easily, and ignition timing is advanced. Regular gasoline and liquefied petroleum gas(LPG) were used as main fuel and dimethyl ether(DME) was used as ignition promoter in this research. Operating range and exhaust emissions were compared LPG HCCI engine with gasoline HCCI engine. Operating range of LPG HCCI engine was wider than that of gasoline HCCI engine. The start of combustion was affected by the intake valve open(IVO) timing and the ${\lambda}TOTAL$ due to the latent heat of vaporization, not like gasoline HCCI engine. At rich operation conditions, the burn duration of the LPG HCCI engine was longer than that of the gasoline HCCI engine. CAD at 20% and 90% of the mass fraction burned were also more retarded than that of the gasoline HCCI engine. And carbon dioxide(CO2) emission of LPG HCCI engine was lower than that of gasoline HCCI engine. However, carbon oxide(CO) and hydro carbon(HC) emission of LPG HCCI engine were higher than that of gasoline HCCI engine.

The Pricing Behavior of Korean Gas Stations (주유소의 가격결정전략)

  • Jo, Young Jin;Lee, Jee Hoon;Yoon, Choong Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.331-341
    • /
    • 2015
  • Gasoline prices vary across Korea. Some gas stations charge higher prices, while others charge lower prices. In this paper, we try to find: why gasoline prices differ markedly across regions. We empirically estimate the determinants of gas prices by incorporating supply side factors as well as demand side factors into the empirical model. Empirical results show that both location-specific factors and store-specific factors affect gas prices. Concentration of competing stores, store brands, ownership of gas stations, and self-service availability influence gas prices. In addition, the availability of other customer services such as convenience stores, car wash, and auto repairs affects gas prices.

A Study on Ignition Hazard Caused by Electrostatic Discharge of Gasoline Used in the Gas Station (주유소에서 사용하는 휘발유의 정전기 방전으로 인한 점화위험성에 관한 연구)

  • Moon, Kyoon-Tae;Chung, Jae-Hee;Mizuki, Yamaguma;Choi, Kwang-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.4
    • /
    • pp.13-18
    • /
    • 2010
  • To investigate electrostatic ignition hazards of commercial gasoline used in the gas station, experiments were conducted dealing with the minimum ignition energy(MIE) of several kinds of gasoline under the various temperature. The conductivity of gasoline that was required for an accurate risk assessment as well as the MIE were also examined. The solvent ignitability apparatus which can heat up the inside of the vessels up to $210^{\circ}C$ was used in this study. Four kinds of premium gasoline and four kinds of regular gasoline, differing with respect to the companies, were used as test specimens. The following results were obtained: (1) all gasoline specimens were so sensitive that even an electrostatic discharge with a very low energy, such as about 0.5mJ, could ignite them. The ignitability of premium gasoline was constant irrespective of the companies. On the other hand, the ignitability of regular gasoline was variable depending on the company. (2) The MIE of all specimens depended markedly on the temperature; in other words, an increase in temperature decreases the ignition energy value. (3) The conductivity values of all specimens were low. Those must be taken into consideration in electrostatic risk assessment.

A study on performance improvement of natural gas fueled engine (천연가스 기관의 성능 향상에 관한 연구)

  • 정동수;정진도;서승우;최교남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.175-179
    • /
    • 1992
  • Generally speaking, natural gas possesses several characteristics that make it desirable as an engine fuel : for example (1) lower production cost, (2) abundant commodity and (3) cleaner energy source than gasoline. Due to the physical characteristics of natural gas, the volumetric efficiency and flame speed of a natural gas engine are lower than those of a gasoline engine, which results in a power loss of 10-20% when compared to a convensional gasoline engine. This paper describes the results of a research to improve the performance of a natural gas engine through the modification and controls of air/fuel ratio, spark timing advance and supercharging effect by forced air supply method.

A Study on Consequence Analysis of LNG/LPG/Gasoline Station (LNG/LPG/가솔린 Station의 사고피해영향평가 비교)

  • Yoo, Jin-Hwan;Kim, Bum-Su;Lee, Heon-Seok;Ko, Euy-Seok;Lee, Gi-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.54-60
    • /
    • 2009
  • The advancement of industry have increased domestic energy demands and energy facilities such as storage facility, compressed gas pipe, station, and tank lorry. Also, concern about environment have diversified energy source to clean energy such as LNG. In these major energy facilities, major accident can happen to result in fire, explosion, toxic release and etc. In addition, it may cause chain accidents to the adjacent energy facilities. In this research, safety assessment was performed through the consequence analysis of LPG liquefied petroleum gas) station, gasoline station and LNG(liquiefied natural gas) station. The obtained result will be helpful to make a safety guideline of the LPG/LNG station built adjacent to the gasoline station.

  • PDF

An Effect of Volatility of Crude Oil Price on Asymmetry of Domestic Gasoline Price Adjustment (국제 유가 변동성이 국내 휘발유 가격 비대칭성에 미치는 영향)

  • Nam-Jae Kim;Hyung-Gun Kim
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.1
    • /
    • pp.351-364
    • /
    • 2023
  • Purpose - This study examines the effects of Dubai oil price and the volatility on the asymmetry of domestic gasoline price adjustment. Additionally, the study investigates the effects of "Altteul" gas-station and tax-cut policies on asymmetry. Design/methodology/approach - Firstly, the study calculates proxies for asymmetry and volatility of each window(every 3-month) by error-correction model and GARCH(1, 1) using daily domestic gas price and Dubai oil price from 2008/04/15 to 2022/12/31. Secondly, the study investigates the effects of the increasing rate of Dubai oil price, volatility, "Altteul" gas-station and tax-cut policies on asymmetry. The autoregressive distributed lag regression model is employed for estimations. Findings - The study finds that changes in the increasing rate of Dubai oil price and both types of volatility of Dubai oil price increase asymmetry. While "Altteul" gas-station and tax-cut policies decrease asymmetry. Additionally, the study fails to find that asymmetry in the Korean gasoline market in the estimation with total observations. Research implications or Originality - An increase in Dubai oil price volatility means an increase in cost uncertainty for gas-station owners. Since cost uncertainty is a kind of financial risk, the increase in volatility reinforces the asymmetry. The study provides supporting evidence for the idea.

A Study on the Comparison of Fuel Combustion Characteristics between Gasoline and Liquified Petroleum Gas on SI Engine (SI 엔진에서의 가솔린과 액화석유가스 연료의 연소특성 비교 연구)

  • Park, S.C.;Ko, Y.N.;Kwon, Y.W.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.12-17
    • /
    • 2008
  • The purpose of this study is to analyse and compare the fuel combustion characteristics between LPG and gasoline on SI engine. Pressures of combustion chamber were measured on the state that engine speed was 2000rpm and BMEP was 2.0bar And we measured pressures of combustion chamber regarding variation of the MBT We could know that the combustion pressure of LPG fuel use engine is appeared lower than that of gasoline fuel use engine. At the lean mixture ratio area we could blow that Ignition timings are pulled very forward, and ignition timing of LPG fuel is advanced to $5\sim12^{\circ}$ CA than gasoline fuel. We learned that the value of coefficient of variation of LPG fuel is higher than gasoline fuel.

  • PDF

A Study on the Source Profile of Volatile Organic Compounds from Major Emission Sources (휘발성 유기화합물의 주요 배출원의 배출물질 구성비에 관한 연구-오존 생성 전구물질을 중심으로-)

  • 김소영;한진석;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.233-240
    • /
    • 2001
  • The composition of volatile organic compounds (VOCs) was anlyzed for major emission sources such as vehicle exhaust, gasoline and diesel vapor, organic solvent vapor, and butane fuel gas. Low carbon-numbered hydrocarbons were found to be the dominant components of gasoline vehicle exhaust. In gasoline evaporative vapor, the predominant constituents were found to be butane and iso-pentane regardless of ambient air temperature. In case of diesel evaporative vapor was similar to those of gasoline evaporative vapor. The composition of organic solvent vapor from painting, ink and petroleum consisted mostly or aromatic compounds such as toluene and m, p, o-xylene. The hydrocarbon fraction of butane fuel gas. which is used by portable bunner, consisted mainly of propane (34%) and butane(70%).

  • PDF

Study on Emission Reduction with Injection Strategy and Exhaust-Gas Recirculation in Gasoline Direct Injection Engine (직접분사식 가솔린 엔진의 분사전략 변경 및 EGR 적용을 통한 배기저감에 관한 연구)

  • Park, Cheol-Woong;Kim, Hong-Suk;Woo, Se-Jong;Kim, Yong-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.335-342
    • /
    • 2012
  • Nowadays, automobile manufacturers are focusing on the reduction of exhaust-gas emissions because of the harmful effects on humans and the environment, such as global warming by greenhouse gases. Gasoline direct injection (GDI) combustion is a promising technology that can improve fuel economy significantly compared to conventional port fuel injection (PFI) gasoline engines. In the present study, ultra-lean combustion with an excess air ratio of over 2.0 is realized with a spray-guided-type GDI combustion system, so that the fuel consumption is improved by about 13%. The level of exhaust-gas emissions and the operation performance with the multiple injection strategy and exhaust-gas recirculation (EGR) are examined in comparison with the emission regulations and from the point of view of commercialization.