• Title/Summary/Keyword: Gasoline of-gas

Search Result 414, Processing Time 0.028 seconds

A Study on Performance of Initial Blowoff Flow for a Fuel Pump with Various Temperature and Composition Condition in LPG Engine (자동차용 LPG 펌프의 온도 및 연료조성에 따른 초기토출성능에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Up;Choi, Kyo-Nam
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.12-17
    • /
    • 2008
  • The In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPG (Liquefied Petroleum Gas) which is able to meet the limits of better emission levels without many modifications to current engine design. LPG has a high vapor pressure and lower viscosity and surface tension than diesel and gasoline fuels. These different fuel characteristics make it difficult to directly apply the conventional gasoline or diesel fuel pump. In this study, experiments are performed to get initial performance and efficiency of the fuel pump under different condition of the temperature and composition of fuel. The characteristics of vane type fuel pump were investigated to access the applicability on LPLi engine.

  • PDF

An Experimental Study on the Distillation Characteristics of Fuel Used in an Internal Combustion Engine Vehicle (내연기관 자동차에 사용되는 연료의 증류특성에 관한 실험적 연구)

  • Youm, Kwang-Wook;Ham, Seong-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.52-56
    • /
    • 2021
  • With the development of an eco-friendly environment and the automobile industry, research is being actively conducted to increase thermal efficiency and reduce exhaust gas through complete combustion in internal combustion engine vehicles. In particular, research is underway to increase engine load and output by understanding the volatility and combustion characteristics of gasoline, and research is underway to reduce soot and harmful gases and realize optimal efficiency based on the distillation and combustion characteristics of diesel fuel. . Therefore, in this study, based on the contents of KS M ISO 3045 on the distillation test method for petroleum products according to the Korean industrial standard, distillation experiments were conducted based on gasoline and diesel from 4 refineries marketed and used in Korea. The distillation experiment confirmed the correlation with the distillation temperature according to the amount of distillation, and the distillation characteristics were analyzed by comparing the distilled fuel to confirm the suitability of meeting the test standards.

A Study on the Cold Startability and Emission Characteristics of LPG Vehicle According to Test Temperature (시험온도에 따른 LPG 차량의 저온 시동성 및 배출가스 배출특성 연구)

  • Lee, Min-Ho;Kim, Sung-Woo;Kim, Ki-Ho;Ha, Jong-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.7-13
    • /
    • 2014
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward various main issues : whether PM emissions should be regulated for diesel and gasoline vehicles and whether gasoline and LPG powered vehicles can be further neglected from PM emission inventories. Finally, the greenhouse gas ($CO_2$, $CH_4$, $N_2O$) regulation has been discussed including automotive emission regulation. The greenhouse gas and emissions (PM) particle of automotive had many problem that cause of ambient pollution, health effects. This paper discussed the influence of LPG fuel on automotive cold startability and exhaust emissions gas. Also, this paper assessed emission characteristics due to the test temperature. These test temperature were performed by dividing the temperature of the test mode and the lowest local temperature in winter. Through this study, the correlation of cold startability, exhaust emission and greenhouse gas emission was analyzed.

A Study on the Gas Exchange Characteristics of Intake and Exhaust Systems in the Gasoline Engine (가솔린 기관 흡.배기계의 가스 유동 특성에 관한 연구)

  • 서영호;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.112-119
    • /
    • 1994
  • This study is investigated into the dynamic effect of the manifold configuration during the gas exchange processes using both simulation and experiment, In theoretical study on the flow analysis, the characteristic method is applied to solve the compressible unsteady flow equation, involving the several steady flow boundary conditions. In order to excute the engine experiment efficiently, a data acquisition system is configured by using A/D converter and PC. Good results which coincided experimental data with simulation output were obtained, and it shows that this simulation method can be applied to obtain the optimal design parameters in the intake and exhaust systems.

  • PDF

Comparision in Emission Inspection System of a Gasoline Vehicle in Service (운행 휘발유 자동차의 배출가스검사 시스템 비교)

  • Oh, Sangyeob;Park, Wondeok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • In the most of a nation, the safety and emission gas inspection system of a vehicle in service have been conducted with the most compatible inspection system according to its real environmental situation. Especially, the state of vehicle emission gas is measured by advanced emission gas inspection equipment. It has the problem that the decrease effect of an environmental pollution matter is not calculated by weight percent measurement type equipment. Therefore, in this study, the correlations for the results of emission gas measurement are analyzed by comparing a weight percent measurement type (IDLE+ASM2525 mode) and an advanced mass measurement type (IM240 mode). As the result, the selectivity of an emission gas by IM240 mode is higher than that by IDLE+ASM2525 mode. In the future, therefore, the introduction of IM240 mode and a mass measurement type equipment are necessary. Also, we need to prepare a vehicle emission gas inspection system for introducing IM240 mode.

A Basic Study on Combustion Characteristics of Radical Ignition Sub-chamber Type CNG DI Engine (라디칼 점화 부실 혼합형 CNG DI 엔진의 연소특성에 관한 기초연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Lim, Choon-Mee
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • After the recent fabrication of diesel vehicle exhaust gas by Volkswagen, nitrogen oxides ($NO_x$) and particulate matter (PM) are drawing attention as representative pollutants included in exhaust gas. When gasoline and diesel fuels are combusted through direct injection into a combustion chamber at high pressure, PM emission is actually increased. To find a solution to this problem, a basic study was conducted to derive an optimized variable for combustion of compressed natural gas (CNG) by applying CNG, acknowledged as a clean fuel, to direct injection system. The essence of this study is in the introduction of a radical ignition technology for compressed natural gas (RI-CNG) in a sub-chamber type engine. The direct injection system was applied to a sub-chamber to remove residual gas from previous combustion cycle. In addition, optimal mixer distribution was achieved by precisely setting ignition timing based on fuel injection timing and excess air ratio.

A Study on the Auto-ignition Combustion Characteristics of CH4-Air Pre-mixtures in Constant Volume Combustion Chamber (정적연소기를 이용한 메탄-공기 예혼합기의 자발화 연소특성에 관한 연구)

  • Lee, Jin-Soo;Lee, Hae-Chul;Cha, Kyung-Ok;Jung, Dong-Soo
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.41-47
    • /
    • 2005
  • Exhaust gas emissions from internal combustion engines are one of the major sources of air pollution. And. it is extremely difficult to increase gasoline engine efficiency and to reduce NOx and PM(particulate matter) simultaneously in diesel combustion. This paper offers some basic concepts to overcome the above problems. To solve the problems, a recommended technique is CAI(controlled auto-ignition) combustion. In this paper. internal EGR(exhaust gas recirculation) effect is suggested to realize CAI combustion. An experimental study was carried out to achieve CAI combustion using homogeneous premixed gas mixture in the constant volume combustion chamber(CVCC). A flame trap was used to simulate internal EGR effect and to increase flame propagation speed in the CVCC. Flame propagation photos and pressure signals were acquired to verify internal EGR effect. Flame trap creates high speed burned gas jet. It achieves higher flame propagation speed due to the effect of geometry and burned gas jet.

  • PDF

A Study on the Emissions Characteristics of a LPG Vehicle According to Various Test Modes and Ambient Conditions (다양한 시험모드와 환경조건에 따른 LPG 차량의 배출특성 연구)

  • Lee, Min-Ho;Ha, Jong-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward various main issues : whether PM emissions should be regulated for diesel and gasoline vehicles and whether gasoline and LPG powered vehicles can be further neglected from PM emission inventories. Finally, the greenhouse gas regulation has been discussed including automotive emission regulation. The greenhouse gas and emissions of automotive had many problem that cause of ambient pollution, health effects. Based on various test modes and ambient conditions, this paper discusses the characteristics of LPG on exhaust emissions and greenhouse gases. Also, this paper assessed emission characteristics due to the test temperature. These test temperature were performed by dividing the temperature of the test mode and the lowest local temperature in winter. Through this study, the correlation of vehicle test mode and ambient condition, exhaust emission, greenhouse gas emission was analyzed.

The Qualitative Rate Estimation of PAHs in Carbon Compounds of Particles in Vehicles Exhaust Gas (자동차 배기가스 중 입자상 탄소성분 내 PAHs의 정성적 비율 추정)

  • Kim, Jong Bum;Lee, Kyoung Bin;Kim, Jin Sik;Kim, Chang Hwan;Cha, Yong Ho;Kwon, Soon Bark;Bae, Gwi Nam;Kim, Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2014
  • Since the emergence of domestically produced automobiles in 1964, the number of automobiles in circulation in South Korea has increased constantly. With this rapidly increasing number of automobiles, automobile-induced environmental pollution has become an issue of great concern, especially with regard to air pollution. Of the carbon composites contained in automobile exhaust gas, PAHs are known to be carcinogenic and highly deleterious to humans and thus need to be urgently mitigated. To address this issue of PAHs, this study was conducted to estimate qualitative of particulate PAHs contained in carbon composites in automobile exhaust gas, by capturing all particulate matter discharged from the latter. To allow for differentiated analyses, the automobiles investigated were divided into 4 groups: gasoline vehicle, motocycle, diesel vehicle, and LPG vehicle. Samples were analyzed using two methods. First, in-depth analysis was performed on organic carbon (OC) and elemental carbon (EC) composites with analysis parameters, using the Thermal Optical Transmittance Method (NIOSH 5040). Second, for the examination of particulate PAHs, GC/MSD was used to analyze the 16 PAH species specified by the Environmental Protection Agency (EPA). The analyses yielded the findings that diesel vehicles had the highest mass concentration ($2,007{\mu}g/m^3$), followed by motocycle ($1,066{\mu}g/m^3$), LPG vehicle ($392{\mu}g/m^3$), and gasoline vehicles ($270{\mu}g/m^3$). The highest carbon concentrations in total particulate matter by vehicle weight were produced from LPG vehicle (79.8%), followed by gasoline vehicle (77.4%), motocycle (69.8%), and diesel vehicle (59.1%).

A Study on the the Follow-up Analysis and the Characteristics of Exhaust Gas by Standard Mode of Chassis Dynamometer of Gasoline (가솔린 차량의 차대동력계 표준모드 별 추종성 분석 및 배출가스 특성에 관한 연구)

  • Seo, Dong Choon;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.29-34
    • /
    • 2019
  • In this study, a gasoline test vehicle was evaluated for drive quality in emissions and fuel economy tests. The measurement results were compared with the manufacturer's suggested values to evaluate whether the tolerance ranges (fuel efficiency -5%, greenhouse gas +5%) were exceeded. We carried out tests with test subjects based on the SAE J2951 evaluation method. The test vehicle was a 2L gasoline vehicle. The drive following performance was found to increase under deliberate driving conditions and decreased in smooth driving conditions. As a result of the analysis of the drive following performance, the closer the value is to 1, the more accurate the driving is. (-) indicates harsh conditions, and (+) indicates gentle conditions. The basic data on the driver following between testers was obtained by analysis of the tests. The fuel efficiency correlation with the drive following performance within the target speed range of the fuel consumption mode. In the future, these measurement results can serve as key data for securing an exhaust gas database and fuel efficiency system for each measurement mode.