• Title/Summary/Keyword: Gasoline engine for hybrid vehicles

Search Result 15, Processing Time 0.02 seconds

Analysis of Performance and Emissions Characteristics on Gasoline Engine for Hybrid Vehicles with Optimum EGR Rate and the Cylinder Variation of EGR Rate (하이브리드용 가솔린 엔진에서 최적 EGR적용 및 실린더간 편차에 따른 성능 및 배출가스 특성 분석)

  • Park, Cheol-Woong;Choi, Young;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.87-95
    • /
    • 2009
  • EGR(Exhaust gas recirculation) provides an important contribution in achieving the development targets of low fuel consumption and low exhaust emission levels on gasoline engine for hybrid vehicles while allowing stoichiometric fuelling to be retained for applications using the three-way catalysts. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate in gasoline engine for hybrid vehicles should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR with optimum EGR rate on fuel economy, combustion stability, engine performance and exhaust emissions. As the engine load becomes higher, the optimum EGR rate tends to increase. The increase in engine load and reduction in engine speed make the fuel consumption better. The fuel consumption was improved by maximum 5.5% at low speed, high load operating condition. As the simulated EGR variation on a cylinder is increased, due to the increase in cyclic variation, the fuel consumption and emissions characteristics were deteriorated simultaneously. To achieve combustion stability without a penalty in fuel consumption and emissions, the cylinder-to-cylinder variations must be maintained under 10%.

Analysis of Energy Consumption Efficiency for a Hybrid Electric Vehicle According to the Application of LPG Fuel in WLTC Mode (WLTC 모드에서의 LPG 연료 적용에 따른 하이브리드 자동차 에너지소비효율 분석)

  • Jun Woo, Jeong;Seungchul, Woo;Seokjoo, Kwon;Se-Doo, Oh;Youngho, Seo;Kihyung, Lee
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.195-202
    • /
    • 2022
  • Recently, the global automobile market is rapidly changing from internal combustion engine vehicles to eco-friendly vehicles including electric vehicles. Among eco-friendly vehicles, LPG vehicles are low in fine dust and are suggested as a realistic way to replace diesel vehicles. In addition, it is more economical than gasoline in its class, showing a cost-saving effect. In Korea, the business of converting gasoline into LPG is active. Research is being conducted to apply this to hybrid vehicles. In this study, the difference in energy consumption efficiency was analyzed when LPG fuel was applied by selecting a 2-liter GDI hybrid electric vehicle. The operation of the hybrid system according to various driving characteristics was confirmed by selecting the WLTC mode. As a result, it was confirmed that the BSFC was about 5% lower than that of gasoline fuel when using LPG fuel. This is due to the active operation of the motor while driving. Optimization is required as battery consumption increases from an energy perspective.

A Study on the Feasibility of the Three Prospective Types of HEV (국내 보급 예정 하이브리드 자동차의 유형별 편익 고찰)

  • Lee, Dong-Jun;Lee, Ye-Ji;Heo, Eun-Nyeong
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.52-60
    • /
    • 2008
  • More people have become interested in hybrid vehicles - which have been heralded as environmentally friendly automobiles - recently as the opening of domestic hybrid vehicle market draws near. Since gasoline, diesel and LPG hybrid vehicles will be produced, a need exists to conduct economic feasibility study of each vehicle type. This research analyzed projected benefits of these hybrid vehicles based on the 1600cc model. There are two categories of benefits: 1) reduced fuel costs for the owners of the vehicles; and 2) reduced environmental pollution cost. We conducted a sensitivity analysis and estimated the domestic consumer fuel costs based on the international oil prices of 100USD, 150USD, and 200USD per barrel. The analysis showed savings of 2 to 4 million Won in fuel cost and 1 to 2 million Won in environmental pollution cost; therefore, the hybrid vehicles are not economically feasible if they are between 3 to 5 million Won more expensive than the conventional internal combustion engine vehicles.

  • PDF

Modeling and Analysis of the Speed Profiles for the Gasoline Hybrid Vehicle in the Real Driving Emission Test (가솔린 하이브리드 차량의 실도로 배기규제 평가를 위한 구간 주행 속도 특성 분석 및 해석 모델 개발 연구)

  • Seongsu Kim;Minho Lee;Kyoungha Noh;Junghwan Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.184-190
    • /
    • 2023
  • The European Union has instituted a new emission standard protocol that necessitates real-time measurements from vehicles on actual roads. The adequate development of routes for real driving emissions (RDE) mandates substantial resources, encompassing both vehicles and a portable emission measurement system (PEMS). In this study, a simulation tool was utilized to predict the vehicle speed traversing the routes developed for the RDE measurements. Initially, the vehicle powertrain system was modeled for both a gasoline hybrid vehicle and a gasoline engine-only vehicle. Subsequently, the speed profile for the specified vehicle was constructed based on the RDE route developed for the EURO-6 standard. Finally, the predicted vehicle speed profiles for highway and urban routes were assessed utilizing the actual driving data. The driving model predicted more consistency in the vehicle speed at each driving section. Meanwhile, the human driver tended to accelerate further, and then decelerate in each section, instead of cruising at a predicted section speed.

POWER AND ENERGY STORAGE DEVICES FOR NEXT GENERATION HYBRID ELECTRIC VEHICLE (차세대 복합형 전기자동차의 전력 및 에너지 저장장치)

  • Kim, Min-Huei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.1 no.1
    • /
    • pp.31-41
    • /
    • 1998
  • Fuel conservation and environmental pollution control are the principal motivating factors that are urging at present widespread research and development activities for electric hybrid vehicles throughout the world. The paper describes different possible energy storage devices, such as battery, flywheel and ultra capacitor, and power sources, such as gasoline engine, diesel engine, gas turbine and fuel cell for next generation hybrid electric vehicle. The technology trend and comparison in energy storage and power devices indicate that battery and gasoline engine, respectively will remain the most viable devices for hybrid vehicle at least in the near future.

  • PDF

Development of a One-dimensional Numerical Model of the Electrically Heated Three-Way Catalyst For Start-up Heating in a 48-V Gasoline Hybrid Vehicle (48-볼트 가솔린 하이브리드 차량 초기 시동 시 배기 정화 성능 분석을 위한 1차원 전기 히터 촉매 해석 모델 개발)

  • Seongsu Kim ;Junghwan Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.150-155
    • /
    • 2023
  • Cold-start emissions are given great importance under the Euro-7 emission standard due to their significant impact on overall vehicle emissions. When an engine is started from a cold state, the combustion process is not yet optimized, leading to higher emissions. Hybrid vehicles, in particular, may face additional challenges, as their engine may remain inactive for extended periods, causing their catalysts to cool down and potentially become less effective in reducing emissions. In the present study, the performance of an electric heater was investigated as a means to enhance the catalyst heating during the start-up time. A simulation tool was utilized to develop a model for the gasoline exhaust aftertreatment system. The result indicates that the heater was able to increase the three-way catalyst temperature to 500℃ in 4 s using 20 kW power. In addition, the implementation of a secondary air supply resulted in reduced temperature overshoot and improved conversion efficiencies.

Development and Optimization of Engine Module for Hybrid System Simulator (하이브리드 시스템 시뮬레이터용 엔진 모듈 개발과 최적화에 관한 연구)

  • Jeon, Dae-Il;Gong, Ho-Jeong;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.14-22
    • /
    • 2010
  • Hybrid Electronic Vehicle (HEV) is one of the solutions of high oil price and environment problem. Recently, study of HEV is important for automobile industry. However HEV has a lot of components and there are many cases for assembling, it's impossible to test results from assembling by using real vehicles. To solve this problem, hybrid system simulator is required. The purpose of this study is to develop and optimize of engine module for hybrid system simulator. The commercial 1-D engine simulation program, WAVE is used to get the engine capacity and performance data and 1-D simulation model of base engine is compared with engine experiment results. Using the data, the engine module is developed based on the MATLAB Simulink. There are blocks of base engine, Single-CVVT engine and Dual-CVVT engine. The effect of acceleration and deceleration is applied to each engine block. In addition, the control and processing logics for CIS technology are developed. Finally the simulator operates FTP-72 mode test.

A Study on the Comparison of Emissions and Fuel Efficiency Performance of 2.0 Liter LPG Hybrid Engine and Vehicle (2.0 리터급 LPG 하이브리드 엔진 및 차량의 배출가스 및 연비성능 비교에 관한 연구)

  • Seokjoo Kwon;Bonseok Koo;Jaehoon Kang;Kangmyeon Kim;Sedoo Oh;Youngho Seo
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.191-197
    • /
    • 2023
  • LPG direct injection (LPDi) technology is a method of improving the weaknesses of existing LPG vehicles by directly injection into the combustion chamber. This study was conducted on the comparison of emissions and fuel efficiency performance of the engine and vehicle by applying LPDi technology. The LPDi hybrid engine's maximum output and maximum torque were measured at an equivalent level of less than 1% compared to conventional gasoline fuel. The fuel amount was corrected using the LCU controller, and the THC, CO, and NOx emissions were reduced to 90% in the operating range of the three-way catalyst through air-fuel ratio control. The analysis of THC+NOx and CO emissions in FTP-75 (CVS-75) driving mode satisfied the US LEV III SULEV30 regulation.

The Influence of Operating Conditions on Fuel Economy of the Hybrid Electric Vehicle (운전조건이 하이브리드 자동차의 연비에 미치는 영향 연구)

  • Lee Youngjae;Kim Gangchul;Pyo Youngdug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.35-40
    • /
    • 2005
  • In the present study, the influence of operating conditions on fuel economy for hybrid electric vehicle was analyzed. In order to accomplish this, vehicle speed, engine speed, battery current and voltage, SOC (state of charge),motor speed and torque, generator speed and torque, engine coolant temperature etc. were measured in real time. The tests were carried out under different driving cycles which are urban and highway cycles, KOREA CITY cycle and on-road driving, and also under various operating conditions such as different initial SOC, with or without regenerative braking etc.. Generally, conventional gasoline engines show a poor fuel economy at stop and go driving, because braking energy is wasted and the engine is operated in low thermal efficiency regions. However, in case of hybrid vehicles, higher fuel economy can be obtained because of utilizing the maximum thermal efficiency regions of engine, idling stop of engine, and regenerative braking etc..

A Study on Electromagnetic Emission of HEV's Gasoline and Electric Mode (HEV 차량내 내연기관과 전기모터 모드의 전자파 방사에 대한 고찰)

  • Kim, Sungbum;Woo, Hyungu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.1
    • /
    • pp.12-19
    • /
    • 2018
  • This paper deals with the broadband electromagnetic emission test of a hybrid electric vehicle. The hybrid electric vehicle's powertrain system consists of an internal combustion engine and an EV traction motor. Depending on the SOC of the traction battery, these modes change automatically in the running state. The Korea electromagnetic compatibility regulations of KMVSS and UN WP.29 stipulated the evaluation method of hybrid electric vehicles. This study analyzes and compares two test results: internal combustion and electric motor mode. Some problems of test conditions are described and an improved test method is proposed for measuring broadband emissions of a hybrid electric vehicle. As a result, we expect this paper to be used as a consideration for improvement when test specifications are revised in the future.