• 제목/요약/키워드: Gasoline Direct injection

검색결과 188건 처리시간 0.025초

레이저 산란 영상을 이용한 GDI 인젝터의 엔트로피 해석법에 의한 분무 균일도 특성에 관한 연구 (An Investigation on the Spray Homogeneous Characteristics of a GDI Spray for Entropy Analysis Method using Laser Scattering Images)

  • 우영완;이창희;이기형;이창식
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.44-50
    • /
    • 2002
  • The spray characteristics of GDI(Gasoline Direct Injection) injector affects on engine efficiency and emission of a GDI engine. Thus, many researchers have investigated the spray characteristics and the mixture formation of GDI injector. In this study, it was tried to provide the fundamental data for GDl injector design which effects on the spray macroscopic characteristics such as penetration and spray angle. In addition, the mixture formation analyzed by using entropy analysis. The entropy analysis is based on the concept of statistical entropy, and it identifies the degree of homogeneity in the fuel concentration. The results show that as injection pressure increases but as ambient pressure increases, spray penetration decreases and spray angle doesn't affected by increasing injection pressure and ambient temperature. From the entropy analysis results, we could find that the direct diffusion phenomena is a dominant factor in the formation of a homogeneous mixture at downstream of GDI spray especially in vaporizing conditions.

스월형 가솔린 직분식 인젝터의 분무특성에 대한 수치적 연구 (A Numerical Study on the Spray Characteristics of the Swirl-Type Gasoline Direct Injector)

  • 이충훈;정수진;김우승;이기형;배재일
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.9-21
    • /
    • 2000
  • In this study, the characteristics of high-pressure swirl injector have been studied using a commercial CFD code, STAR-CD and experiment to investigate the effect of the length of orifice and swirl port on the spray characteristics. Influences of swirl port angle and initial conditions have also been examined in terms of penetration depth and Sauter`s mean diameter. Computed results of the spray characteristics are compared with experimental results. The results show that the tangential velocity at the nozzle exit decreases, but the axial velocity increases as swirl port angle is increased. Hence, the static flow rate increases, but the initial spray angle decreases with increasing the swirl port angle. It is also shown that the values of the initial SMD used as input data for spray simulation influences the penetration depth and SMD. The spray pattern from the present numerical simulation agrees well with experimental result.

  • PDF

이중분사식 수소기관의 비정상 열부하 해석에 관한 연구 (A Study on Unsteady Thermal Loading of Hydrogen Engine with Dual Injection)

  • 위신환;김윤영;김홍준;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제12권2호
    • /
    • pp.147-155
    • /
    • 2001
  • To measure of thermal loading in the combustion chamber of hydrogen engine with dual injection, instantaneous wall-surface temperature and unsteady heat flux of the cylinder head are measured and analyzed. The maximum wall surface temperature is shown in direct injection region which has large heat supplied. Partial and spatial temperatures have slight deviation in transient region of injection, though injection method change suddenly. All of thermal characteristics such as instantaneous temperature, temperature swing and heat flux of hydrogen engine with dual injection are remarkably higher than those of gasoline engine. It means necessity of additional countermeasure of thermal loading.

  • PDF

급속 압축팽창 장치를 이용한 직접분사식 가솔린 기관의 실린더 내 분무 및 연소특성에 관한 연구 (A Study on In-cylinder and Combustion Characteristics of GDI Engine using RCEM)

  • 조규백;정용일
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.76-85
    • /
    • 1999
  • GDI(Gasoline Direct Injection( engine technology is well known as a new technology since it can improve fuel consumption and meet future emission regulations. But the GDI has many difficulties to be solved, such as complexity of injection control mode, unburned hydrocarbon, and restricted power. A 2-D shape combustion chamber was adopted to investigate mixture formation and combustion characteristics of GDI engine. Spray and combustion experiments were performed by changing the injection timing. injection pressure an din-cylinder flow in Rapid Compression and Expansion Machine(RCEM).Through the experiments, the detailed characteristics of fuel spray and combustion was analyzed by visualizing the in-cylinder phenomena according to the change of injection condition, and the optimal fuel injection timing and fuel injection pressure were obtained.

  • PDF

횡단공기류에서의 고압 가솔린 분사시 연료분무 특성 (Fuel-Spray Characteristics of High Pressure Gasoline Injection in Cross Flows)

  • 이석환;최재준;김성수;이상용;배충식
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.30-39
    • /
    • 2001
  • The direct injection into the cylinders has been regarded as a way of the reduction in fuel consumption and pollutant emissions. The spray produced by the high pressure injector is of paramount importance in DISI(Direct Injection Spark Ignition) engines in that the primary atomization process must meet the requirement of quick and complete evaporation, mixing with air and combustion especially to prohibit the excessive HC emissions. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside the cylinder of the DISI engine. The direct Mie scattered and shadowgraph images presented the macroscopic view of the liquid sprays and vapor fields. The velocity and particle size of fuel droplets were investigated by phase doppler anenometer(PDA) system. The processes of atomization and evaporation with a DISI injector were observed and consequently utilized to construct the data-base for the spray and fuel-air mixing mechanism as a function of the flow characteristics.

  • PDF

와류형 고압인젝터의 초기분무의 분열 과도현상 (Transient Breakup Phenomena of Initial Spray from High-Pressure Swirl Injector)

  • 최동석;김덕줄;고장권
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1132-1140
    • /
    • 1998
  • The disintegration process of initial spray from high-pressure swirl injector was investigated at different injection pressures. The transient breakup phenomena that were difficult to observe at high injection pressure were easily observed at the low injection pressure of 0.4MPa. The effect of fuel remained inside a nozzle hole volume on the penetration of initial spray was also investigated. The disintegration process of initial spray could be classified four regions: the formation of mushroom shape, the first collision, the second collision, and the development of spray, The liquid film of cup shape was particularly found in the second collision region, and the growth ratio of its length and width at low and high injection pressures were compared.

스파크점화직분식 CNG의 점화성 및 연소화염 특성에 대한 연구 (An Experimental Study on the Ignition Probability and Combustion Flame Characteristics of Spark-Ignited Direct-Injection CNG)

  • 황성일;정성식;염정국;전병열;이진현
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.37-46
    • /
    • 2016
  • For the SI engines, at only full load, the pumping loss has a negligible effect, while at part load conditions, the pumping loss increases. To avoid the pumping loss, the spark-ignited engines are designed to inject gasoline directly into the combustion chamber. In the spark-ignited direct-injection engines, ignition probability is important for successful combustion and the flame propagation characteristics are also different from that of pre-mixed combustion. In this paper, a visualization experiment system is designed to study the ignition probability and combustion flame characteristics of spark-ignited direct-injection CNG fuel. The visualization system is composed of a combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. It is found that ambient pressure, ambient temperature and ambient air flow velocity are important parameters which affect the ignition probability of CNG-air mixture and flame propagation characteristics and the injected CNG fuel can be ignited directly by a spark-plug under proper ambient conditions. For all cases of successful ignition, the flame propagation images were digitally recorded with an intensified CCD camera and the flame propagation characteristics were analyzed.

횡방향 유속 변화에 따른 고압 가솔린 스월 인젝터의 분무특성 (Spray Characteristics of High Pressure Gasoline Swirl Injector with Various Cross-flow Speeds)

  • 최재준;이용석;최욱;배충식
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2005
  • The spray prepared for direct fuel injection into cylinder is of great importance in a DISI(Direct Injection Spark Ignition) engine. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of in-cylinder flow conditions in the DISI engine. The Mie-scattering images presented the macroscopic view of the liquid spray fields interacting with cross-flow Particle sizes of fuel droplets were measured with phase Doppler anemometer(PDA) system. A faster cross-flow field made SMD larger and $D_10$ smaller. The atomization and evaporation processes with a DISI injector were observed and consequently utilized to construct the database on the spray and fuel-air mixing mechanism as a function of the flow characteristics.

1D 시뮬레이션 기반 GDI 인젝터의 비선형적 분사 특성 해석에 대한 연구 (Investigation on the Non-linear Injection Characteristics of GDI injector using 1D Simulation)

  • 이진우;문석수;허동한;강진석
    • 한국분무공학회지
    • /
    • 제28권4호
    • /
    • pp.169-175
    • /
    • 2023
  • Multi-injection scheme is being applied to GDI combustion to reduce PM and PN emission to meet the EU7 regulation. However, very short injection duration encounters the ballistic injection region, which injection quantity does not increase linearly with injection duration when applying multi-injection. In this study, numerical studies were conducted to reveal the cause of ballistic injection and the effect of design parameters on ballistic region using 1-D simulation, AMESim. Injection rate and injection quantity were compared with experiment to validate the established model, which showed the accuracy with 10% error. The model revealed that the tendency of ballistic region coincides with the needle motion behavior, which means that parameters at the upper part of needle such as electro-magnetic force, needle spring force and needle friction force have dominant effect on ballistic injection. To figure out the effect of electro-magnetic and needle friction force on ballistic, those parameters were varied to plus and minus 10% with model. The result showed that those parameters clearly changed the ballistic region characteristics, however, the impact became insignificant for outside of ballistic region, which means that the ballistic injection is mainly influenced by initial motion of injector needle.

LPG 예혼합 압축 착화 엔진의 배기가스 및 연소 특성 (Emissions and Combustion Characteristics of LPG HCCI Engine)

  • 염기태;장진영;배충식
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.149-156
    • /
    • 2006
  • This paper investigates the steady state combustion characteristics of LPG homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out the benefits in exhaust gas emissions. VVT is one of the attractive ways to control HCCI engine. Hot internal residual gas which is controlled by VVT device, makes fuel is evaporated easily, and ignition timing is advanced. Regular gasoline and liquefied petroleum gas(LPG) were used as main fuel and dimethyl ether(DME) was used as ignition promoter in this research. Operating range and exhaust emissions were compared LPG HCCI engine with gasoline HCCI engine. Operating range of LPG HCCI engine was wider than that of gasoline HCCI engine. The start of combustion was affected by the intake valve open(IVO) timing and the ${\lambda}TOTAL$ due to the latent heat of vaporization, not like gasoline HCCI engine. At rich operation conditions, the burn duration of the LPG HCCI engine was longer than that of the gasoline HCCI engine. CAD at 20% and 90% of the mass fraction burned were also more retarded than that of the gasoline HCCI engine. And carbon dioxide(CO2) emission of LPG HCCI engine was lower than that of gasoline HCCI engine. However, carbon oxide(CO) and hydro carbon(HC) emission of LPG HCCI engine were higher than that of gasoline HCCI engine.