• Title/Summary/Keyword: Gasoline Direct Injection

Search Result 188, Processing Time 0.019 seconds

A Study on the Characteristics of Direct Injection Spark Ignition Engine using a Liquefied Petroleum Gas Fuel (LPG 연료를 이용한 직접분사식 스파크점화 엔진의 특성에 관한 연구)

  • Lee, Min-Ho;Jeong, Dong-Soo;Cha, Kyung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.44-51
    • /
    • 2005
  • According to the increasing concern on the global environment, the $CO_2$ regulation has been discussed including automobile emission regulation. In order to cope with this rapid changing circumstances, the development of an ultra low emission and super fuel economy automobile is essential. Direct injection LPG engine is the one of the possible future engine to maximize the engine efficiency. This experimental study for the development of direct injection LPG engine technology is promoted with two parts; spray characteristics of high pressure swirl injector, and performance characteristics of direct injection LPG engine. Engine characteristics according to the fuel was analyzed in order to establish stratified combustion technology for LPG engine by using the DISI engine. In the engine experiment, control system was manufactured for gasoline and LPG fuel. The engine was modified 2,000 cc GDI engine (fuel supply device, fuel injection device). Through this experiment, engine operating condition, engine speed and spark timing (MBT), fuel injection position, and fuel rate were investigated.

Improvement of engine noise causing rough sound quality (거친 청감을 유발하는 엔진소음 개선 방향 고찰)

  • Jung, Insoo;Kim, Sukzoon;Cho, Teockhyeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.242-247
    • /
    • 2018
  • The automotive industry is making various efforts to cope with ever-increasing exhaust emissions and fuel economy regulations. However, this often results in degraded NVH (Noise, Vibration, and Harshness) performance. For example, we proposed the causes and improvements for the noise generated by the high-pressure pump noise of a gasoline engine, the change of acceleration noise due to dual injection of MPI (Multi-Point Injection) and GDI (Gasoline Direct Injection), the noise of a gasoline turbocharger, and the combustion noise deteriorated due to the injection parameters calibration in a diesel engine. Since these noises are caused by the high frequency noise, and the driver feels the rough sound quality, efforts to reduce them with proper NVH measures are indispensable.

Spray Behaviors and Characteristics of Droplet Distribution in GDI injector (GDI 엔진 인젝터의 연료 분무 거동 및 액적 분포 특성)

  • Kim, M.K.;Lee, C.S.;Lee, K.H.;Jin, D.
    • Journal of ILASS-Korea
    • /
    • v.6 no.2
    • /
    • pp.16-21
    • /
    • 2001
  • This paper describes the macroscopic behavior and atomization characteristics of the high-pressure gasoline swirl injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. The atomization characteristics of gasoline spray such as mean diameter and mean velocity of droplets were measured by the phase Doppler particle analyzer system. The macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 7 and 10 MPa of injection pressure under different spray cone angle. The results of this work show that the geometry of injector was more dominant over the macroscopic characteristics of spray than the fuel injection pressure and injection duration. As for the atomization characteristics, the increase of injection pressure resulted in the decrease of fuel droplet diameter and the atomization characteristics differed as to the spray cone angle. The most droplets had under $25{\mu}m$ diameter and for the large droplets(upper $40{\mu}m$) as the spray grew the atomization presses were very slow. Comparison results between the measured droplet distribution and the droplet distribution functions revealed that the measured droplet distribution is very closed to the Normal distribution function and Nukiyama-Tanasawa's function.

  • PDF

Development of Gasoline Direct Swirl Injector III (직접분사식 가솔린 선회분사기 개발에 관한 연구 III)

  • Part, Young-Kug;Oh, Jae-Geon;Lee, Choong-Won
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.39-48
    • /
    • 2001
  • The Gasoline Direct Injection(GDI) system has been highlighted due to the improvement of fuel consumption and the control of exhaust emission from gasoline engines. Main purpose of the present study is to measure spray characteristics of GDSI for real engine application. We have investigated experimentally spray tip penetration, spray angle, tip velocity and spatial spray distribution. Counter-rotating vortex grown on the spray surface plays an important role in the spray characteristics. Accordingly the spray tip penetration and tip velocity do not excess 50mm, 20m/s respectively, under 0.6MPa ambient pressure. the spray cone angle of GDSI have a same tendency to a simplex swirl atomizer.

  • PDF

Comparison of Spray Characteristics according to Physical Properties of Ethanol/Gasoline Blended Fuel (에탄올/가솔린 혼합연료의 물리적 특성에 따른 분무 특성 비교)

  • Kim, Woong Il;Kim, Youngkun;Lee, Hwang Bok;Lee, Kihyung
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.109-115
    • /
    • 2017
  • The aim of this study is to investigate the effect of physical properties of fuels on spray characteristics in the gasoline direct injection system. Injection rate, spray visualization, and spray pattern experiments were performed to analyze the spray characteristics of ethanol, gasoline, and ethanol/gasoline blends. We measured injection rate of each fuel via the Bosch method. The spray visualization experiment was also carried out at atmospheric pressure using a high-speed camera. Finally, the average of drop surface area per unit volume was measured using the optical patternator. The experimental results from Bosch method showed that peak injection rate increased when the volume fraction of ethanol increased. In addition, higher viscosity of ethanol than that of gasoline leads to longer injection delay. At the initial injection region before reaching 0.8 ms, the spray tip penetration becomes longer as increasing the volume fraction of ethanol, but reversely shorter after 0.8 ms. It was found that ethanol makes spray angle become larger. The surface area per unit volume of the drop was decreased as the distance from the injection tip or the concentration of the gasoline increased.

In-cylinder Spray Flow Characteristics in Direct-injection Gasoline Engine (직접 분사식 가솔린 엔진의 실린더 내 분무 유동 특성에 관한 연구)

  • 김진수;전문수;윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.51-59
    • /
    • 2000
  • In-cylinder spray flow motion plays an important in the adjustment of mixture preparation with a fundamental spray characteristics and in-cylinder flow field well in direct-injection gasoline engine. In this study, the fundamental spray characteristics such as mean drop size, velocity distribution, spray angle were measured and in-cylinder spray flow motion was visualized in order to optimize intake port, piston top land and combustion chamber shapes in the development stage of mass-produced G야 engine. For these experiments, the PDPA measurements and Mie scattering technique were used for detailed spray characteristics and in-cylinder spray motions were obtained by use of ICCD camera through the single-cylinder optical engine. From the experimental results, the test injector shows a good low-end linearity between the dynamic flow and fuel injection pulse width and the fuel spray of 20mm or less in SMD with good spray symmetry. In addition, the in-cylinder tumble flow has more effect on the homogeneous mixture formation than that of in-cylinder swirl flow at early injection mode and the in-cylinder swirl flow plays a better role of stratified mixture preparation than tumble flow at late injection mode.

  • PDF

Particulate Emissions from a Direct Injection Spark-ignition Engine Fuelled with Gasoline and LPG (가솔린 및 LPG 연료를 사용하는 직접분사식 불꽃점화엔진에서 배출되는 극미세입자 배출 특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Kang, Kern-Yong;Cho, Jun-Ho;Cha, Kyoung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.65-72
    • /
    • 2011
  • In this study, the numbers, sizes of particles from a single cylinder direct injection spark-ignition (DISI) engine fuelled with gasoline and LPG are examined over a wide range of engine operating conditions. Tests are conducted with various engine loads (2~10bar of IMEP) and fuel injection pressures (60, 90, and 120 bar) at the engine speed of 1,500 rpm. Particles are sampled directly from the exhaust pipe using rotating disk thermodiluter. The size distributions are measured using a scanning mobility particle sizer (SMPS) and the particle number concentrations are measured using a condensation particle counter (CPC). The results show that maximum brake torque (MBT) timing for LPG fuel is less sensitive to engine load and its combustion stability is also better than that for gasoline fuel. The total particle number concentration for LPG was lower by a factor of 100 compared to the results of gasoline emission due to the good vaporization characteristic of LPG. Test result presents that LPG for direct injection spark ignition engine help the particle emission level to reduce.

Engine Operation Characteristics of a Gasoline Direct Injection Engine (가솔린 직접 분사식 엔진의 운전특성에 관한 연구)

  • 조한승;박태용;박성진;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.54-66
    • /
    • 2000
  • A gasoline direct injection single cylinder engine has been developed to study operational characteristics for highly stratified conditions. Parameters related to design and experiment were also studied to understand the characteristics of combustion and emissions at some part load conditions. It was found that optimal timings between the end of fuel injection and spark ignition were existed for stable combustion under the stratified modes, In a low engine speed, fuel spray behavior around piston bowl was important for stable combustion. The in-cylinder air motion affecting fuel spray behavior was found to be a dominant factor at higher engine speed as fuel injection timing had to be advanced to secure enough time for fuel evaporation and mixing with surrounding air. As swirl ratio increased, spark timing could be advanced for stable combustion and a higher compression ratio could be used for improved fuel consumption and stable combustion at the stratified mode. It was also observed that electrode geometry and piston bowl shape played an important role for combustion and emission characteristics and some results were shown for comparison.

  • PDF

A Study on the Development of Stoichiometric Direct Injection Gasoline Engine by Homogeneous Charge (균일 혼합기를 이용한 이론 공연비 직접분사 가솔린 엔진 개발에 관한 실험적 연구)

  • 이내현;유철호;최규훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.32-42
    • /
    • 1998
  • Lean burn gasoline engine is recognized as a promising way to meet better fuel economy. Lean burn engine is classified into port injection and direct injection(DI), DI is more active technique for improving fuel economy with ultra-lean operation, Nowadays, port injected lean burn engine has been produced by many Japan maker. Also, DI engine is also possible for production owing to improvement in control technique of spray, flow air fuel ratio. DI engine uses either homogeneous stoichiometric mixture or stratified mixture by controlling injection timing to be early or late respectively. HM(homogeneous mixture) is worse than SM(stratified mixture) in view of ultra-lean operation in partical load and Nox reducion by using EGR control. But, HM has advanteges in cold starting and emission reduction during transient operation, This paper describes experimental variables and bench test results of HM GDI engine.

  • PDF

Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter (DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.