• Title/Summary/Keyword: Gasification reaction

Search Result 154, Processing Time 0.019 seconds

Kinetic Model for Oxidation of Carbon Fiber/Glass Matrix Composites

  • Park, Chan;Park, Hee-Lack
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.254-259
    • /
    • 1998
  • A kinetic model predicting the oxidation of carbon fiber reinforced glass matrix composites has been described. The weight loss of composites during oxidation implied that a gasification of carbon fiber takes place and the transport of reactants $(O_2)$ or product (CO or $CO_3$) in the glass matrix was partially the rate controlling step. The kinetic model in this study was based on the work of Sohn and Szekely which may be regarded as a generalization of numerous models in the gas-solid reaction system. A comparison of this model with experimental data is also presented.

  • PDF

Effects of Biomass Gasification by Addition of Steam and Calcined Dolomite in Bubbling Fluidized Beds (기포유동층에서 수증기 및 소성된 백운석 첨가에 의한 바이오매스 가스화의 영향)

  • Jo, WooJin;Jeong, SooHwa;Park, SungJin;Choi, YoungTai;Lee, DongHyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.783-791
    • /
    • 2015
  • A fluidized-bed reactor with an inside diameter of 0.1 m and a height of 1.2 m was used to study the effect of steam and catalyst additions to air-blown biomass gasification on the production of producer gas. The equipment consisted of a fluidized bed reactor, a fuel supply system, a cyclone, a condenser, two receivers, steam generator and gas analyzer. Silica sand with a mean particle diameter of $380{\mu}m$ was used as a bed material and calcined dolomite ($356{\mu}m$), which is effective in tar reduction and producer gas purification, was used as the catalyst. Both of Korea wood pellet (KWP) and a pellet form of EFB (empty fruit bunch) which is the byproduct of Southeast Asia palm oil extraction were examined as biomass feeds. In all the experiments, the feeding rates were 50 g/min for EFB and 38 g/min for KWP, respectively at the reaction temperature of $800^{\circ}C$ and an ER (equivalence ratio) of 0.25. The mixing ratio (0~100 wt%) of catalyst was applied to the bed material. Air or an air-steam mixture was used as the injection gas. The SBR (steam to biomass ratio) was 0.3. The composition, tar content, and lower heating value of the generated producer gas were measured. The addition of calcined dolomite decreased tar content in the producer gas with maximum reduction of 67.3 wt%. The addition of calcined dolomite in the air gasification reduced lower heating value of the producer gas. However The addition of calcined dolomite in the air-steam gasification slightly increased its lower heating value.

Characteristics of Hydrogen Production by Catalytic Pyrolysis of Plastics and Biomass (플라스틱 및 바이오매스의 촉매 열분해에 의한 수소 생성 특성)

  • Choi, Sun-Yong;Lee, Moon-Won;Hwang, Hoon;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.221-227
    • /
    • 2010
  • In this study, we consider gas generation characteristics on pyrolysis of eco-fuel which were made by mixing of Pitch Pine and Lauan sawdust as biomass and polyethylene, polypropylene, polystyrene as municipal plastic wastes with catalyst in fixed bed reactor. From the result of higher heating value(HHV) measurement and of ultimate analysis, the heating value of plastic wastes and a hydrogen content in plastic sample are higher than biomass. An activation energy was reduced by a catalyst addition. However the catalyst content influence over 5 wt% was insignificant. The yield of hydrogen from gasification of biomass containing plastic wastes such as polyethylene, polypropylene and polystyrene were obtained higher than that of sole biomass. The high temperature and mixture ratio of catalyst conditions induced to high hydrogen yield in most of the samples. As the influence of catalyst, the hydrogen yield by catalytic reaction was higher than non-catalytic reaction. We confirmed that Ni-$ZrO_2$ catalyst is more active in increasing the hydrogen yield in comparison with that of carbonate catalyst. The maximum hydrogen yield was 65.9 vol.%(Pitch Pine / polypropylene / 20 wt.% Ni-$ZrO_2$(1:9) at $900^{\circ}C$).

Steam Gasification Characteristics of Wood Pellet (우드펠릿의 스팀가스화 특성)

  • Hwang, Hoon;Lee, Moon-Won;Choi, Sun-Yong;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.215-220
    • /
    • 2010
  • Hydrogen is a clean and efficient energy source and is expected to take an important role in future energy demand. A possibly good route to produce hydrogen is by using biomass and organic wastes as a source through thermo-chemical conversion technology. In this study, pyrolysis of wood Pellet(Oregon pine) has been carried out in batch type fixed-bed reactor in $N_2$ atmosphere during 20 minutes to determine the optimum hydrogen generating conditions. At the influence of temperature, hydrogen yield was increased with increasing temperature. For the influence of Steam/Biomass Ratio(SBR), hydrogen yield was increased by steam addition at low temperature condition. However, effect of steam addition was insignificant over at SBR = 1. The hydrogen yield was increased with increasing SBR at high temperature condition. From result of $H_2$/CO and $H_2/CH_4$ ratio, dominant reaction was steam reforming in this experimental condition. The optimum condition for hydrogen production was determined as follows: $H_2$ yield = 38.3 vol.% (56.01 L/min kg) at $900^{\circ}C$, SBR=3.

A Study on Characteristics of Wood Pellet Gasification in Two Stage Gasifier (Two Stage Gasifier에서의 우드펠릿 가스화 특성 연구)

  • Lee, Moon-Won;Choi, Sun-Yong;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • In this study, characteristics of wood pellet gasification was studied using a Two Stage Gasifier which is consisted of pyrolysis reactor and ultra high temperature reformer. The average yields of $H_2$, $CH_4$, CO, $CO_2$ were 16.7, 11.3, 37.2, 26.6 L/mim, conversion rate from biomass to gas was 65% in pyrolysis reactor and gas yields in reformer were 55.4, 0.8, 120.8, 56.8 L/mim, respectively. The hydrogen flow rate from reformer is obtained 360.1 L/hr. The most of $CH_4$ was decomposed from 12.3 to 0.3 vol.% while $H_2$ is from 18.2 to 23.7 vol.% in reformer by methane dry reforming, Boudouard reaction, oxidation and/or steam reforming. The amount of $H_2O$ generated by hydration reaction from reformer was 1111.8 g, its accelerated conversion of $CH_4$ to other products. The conversion rate from $CH_4$ to other Compounds was 97.2%. Cold gas efficiency was 53.2%.

Methane Conversion to Hydrogen Using Ni/Al2O3 Catalyst (Ni/Al2O3 촉매를 이용한 메탄의 수소 전환)

  • Kim, Jun-Keun;Park, Joo-Won;Bae, Jong-Soo;Kim, Jae-Ho;Lee, Jae-Goo;Kim, Younghun;Han, Choon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.466-470
    • /
    • 2008
  • The objective of this study is to convert methane into hydrogen using a nanoporous catalyst in the $CO_2$ containing syngas generated from the gasified waste. For the purpose, $Ni/Al_2O_3$ catalyst was prepared with the one-pot method. According to analyses of the catalyst, three dimensionally linked sponge shaped particles were created and the prepared nanoporous catalysts had larger surface area and smaller particle size and more uniform pores compared to the sphere shaped commercial catalyst. The catalyst for reforming reaction gave the highest $CH_4$ conversion of 91%, and $CO_2$ conversion of 92% when impregnated with 16 wt% of Ni at the reaction temperature of $750^{\circ}C$. At that time, the prepared catalyst remarkably improved the $CH_4$ and $CO_2$ conversion up to 20% compared to the commercial one.

Algae Culture Characteristics Viewed with Continuous and Cyclic Irradiation in High Rate Algae Biomass Culture Pond (고율 조류 생세포체 배양지에서 조사 조건으로 본 조류 배양 특성)

  • 공석기
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.123-129
    • /
    • 1999
  • The utilization methods of algae biomass have been studied constantly in whole world. These are $\circled1$the wastewater treatment if waste stabilization pond and oxidation ditch etc. and $\circled2$the biosorption of heavy metals and recovery of strategic' precious metals and $\circled3$the single-celled protein production and the production of chemicals like coloring agent and $\circled4$the production of electric energy through methane gasification. The culture system also has been developed constantly in relation with such utilization method developments. In the result of experimental operation under continuous and cyclic irradiation of light, using high rate algae biomass culture pond(HRABCP), which had been made so as to be an association system with the various items which had been managed to have high efficiency for algae culture, the algae production of the 12 hours-irradiance pond was 41.48 Chlorophyll-a ${\mu}g/L$ only in spite of having the more chance of $CO_2$ synthesis to algae cell than the 24 hours-irradiance pond. This means that the energy supply required for dark-reaction of photosynthesis is very important like this. The difference of algae production between continuous and cyclc irradiation explains that the dark-reaction of photosynthesis acts on algae production as the biggest primary factor. The continuous irradiance on HRABCP made the good algae-production($1403.97{\;}{\mu}g$ Chlorophyll-a/mg) and the good oxygen-production(5.8 mg $O_2/L$) and the good solid-liquid seperation. especially, DO concentration through the oxygen-production was enough to fishes' survival.

  • PDF

A Study on Reaction Characteristics of Fe$_2$O$_3$High-Temperature Desulfurization Sorbents (Fe$_2$O$_3$계 고온건식탈황제의 반응특성 연구)

  • Kang, Suk-Hwan;Rhee, Young-Woo;Kang, Yong;Han, Keun-Hee;Yi, Chang-Keun;Jin, Gyoung-Tae;Son, Jae-Ek;Park, Yeong-Seong
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.123-130
    • /
    • 1996
  • Reduction, sulfidation, and regeneration reactions were performed using domestic and Australian iron ore in order to develop a desulfurizing sorbent for the high temperature desulfurization process that is one of major processes in the integrated coal gasification combined cycle (IGCC) system. A TGA (Thermogravimetric Analysis) reactor and a fixed-bed reactor were used. Some basic kinetic information was obtained from BET surface area measurements, SEM photos, cyclic reactions, reaction temperature changes and TGA curves of the sorbents. The rates of both desulfurization and regeneration increased with increasing reaction temperature in the range of 500-700$^{\circ}C$.

  • PDF

A Study of Regeneration Reaction for Desulfurization Sorbents using Natural Manganese Ore (천연 망간 광석 탈황제의 재생 반응 특성 연구)

  • 윤여일;윤용승;김성현
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.247-253
    • /
    • 2002
  • Natural manganese ore was selected as main active component for a non-zinc desulfurization sorbent used in the gas clean-up process of the integrated gasification combined cycle (IGCC) because of excellent H$_2$S removal efficiency and economical aspect . In this study, the regeneration characteristics of sorbent after desulfurization reaction were determined in a thermobalance reactor and a fixed bed reactor in the temperature range of 350~55$0^{\circ}C$. The mixed gases of oxygen and nitrogen are used as the regeneration reaction gases for manganese sorbent. According to Mn-S-O phase diagram, the manganese sorbent has a low regeneration efficiency in medium temperature due to formation of MnSO$_4$ and the regeneration temperature must be over 85$0^{\circ}C$. To improve that problem, ammonia and steam was added in regeneration mixed gases. Effect of new regeneration method was determined by XRD and difference of desulfurization through multicycle tests.

Development of Analysis Model for Down Scaled Two Phase Catalytic Reactor (초소형 촉매 이상 분해 반응기 해석 모델 개발)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2004
  • Analysis model for the two-phase catalytic reactor is presented. With the progress in development of micro thermofluidic devices, needs fur understanding of the phenomena in two phase reaction in cm scale has been arisen. To investigate thermal and reactive performance of down scaled two phase reactor simple analysis model that is a kind of lumped flow model is proposed. Analysis model presented is based on the experiment on mm scale model reactor. Target experiment is catalytic decomposition of 70wt% hydrogen peroxide with existence of perovskite L $a_{0.8}$S $r_{0.2}$Co $O_3$ catalyst. It is composed of balance equations of mass and energy. Each phase is considered to be a species fur the simplicity. Axial diffusion and transversal distribution of properties are neglected. Two phase catalytic reaction is modeled as successive gasification of liquid lump around catalyst and reaction in gas phase. Heat transfer is modeled by model function ofNu number. Modeled Nu is expressed as Nu=N $u_{0}$ (1+ $a_1$( $a_2$ $T^{-}$ $a_3$)exp( $a_4$ $T^{-1}$)exp( $a_{5}$ z). Transfer coefficients are determined by the comparison of experimental results. With the model, heat transfer characteristics are investigated. Also by the mass transfer coefficient, characteristics in mass transfer is investigated. With the result basic understanding on design and analysis of mm scale two-phase reactive device is obtained. Also it can be further applied to micro scale reactive device fabricated by micromachining.ing..