• Title/Summary/Keyword: Gasification reaction

Search Result 154, Processing Time 0.034 seconds

Pyrolysis, Partial Oxidation, and Combustion Characteristics of Micro Algae (미세 조류의 열분해, 부분산화, 연소 특성 연구)

  • Seo, Myung Won;Kim, Sang Done;Na, Jeong Geol;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.734-739
    • /
    • 2009
  • Characteristics of pyrolysis, partial oxidation, combustion of chlorella, which is one species of micro-algae, were determined by using thermobalance reactor(I.D. 5.5 cm, Height 1 m). Effect of reaction temperature($500{\sim}800^{\circ}C$), water content in chlorella(0~60%), and oxygen content(0~21vol%) on thermal decomposition of chlorella were also determined and analyzed to investigate the kinetic characteristics of pyrolysis, partial oxidation and combustion. As the temperature and partial pressure increases, the carbon conversion increases. In case of pyrolysis, carbon conversion and reactivity sharply decreased with increasing moisture content. However, carbon conversion and reactivity decreased at 60% water content in case of partial oxidation and combustion. As reaction temperature and oxygen content increased, carbon conversion increased and the combustion reaction rate equation for chlorella has been presented. $\frac{dX}{dt}=(7.41{\times}10^{-1})$exp$\left(-\frac{19600}{RT}\right)(P_{O_{2}})^{0.209}(1-X)^{2/3}$.

High Temperature Corrosion in Carbon-Rich Gases

  • Young, D.J.
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.69-76
    • /
    • 2008
  • Common methods for large scale hydrogen production, such as steam reforming and coal gasification, also involve production of carbonaceous gases. It is therefore necessary to handle process gas streams involving various mixtures of hydrocarbons, $H_2$, $H_2O$, CO and $CO_2$ at moderate to high temperatures. These gases pose a variety of corrosion threats to the alloys used in plant construction. Carbon is a particularly aggressive corrodent, leading to carburisation and, at high carbon activities, to metal dusting. The behaviour of commercial heat resisting alloys 602CA and 800, together with that of 304 stainless steel, was studied during thermal cycling in $CO/CO_2$ at $650-750^{\circ}C$, and also in $CO/H_2/H_2O$ at $680^{\circ}C$. Thermal cycling caused repeated scale separation, which accelerated chromium depletion from the alloy subsurface regions. The $CO/H_2/H_2O$ gas, with $a_C=2.9$ and $p(O_2)=5\times10^{-23}$ atm, caused relatively rapid metal dusting, accompanied by some internal carburisation. In contrast, the $CO/CO_2$ gas, with $a_C=7$ and $p(O_2)=10^{-23}-10^{-24}$ atm caused internal precipitation in all three alloys, but no dusting. Inward diffusion of oxygen led to in situ oxidation of internal carbides. The very different reaction morphologies produced by the two gas mixtures are discussed in terms of competing gas-alloy reaction steps.

Characteristics of Solid Fuel Oxidation in a Molten Carbonate Fuel Cell

  • Lee, Choong-Gon;Kim, Yu-Jeong;Kim, Tae-Kyun;Lee, Sang-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.91-96
    • /
    • 2016
  • Oxidation behaviours of ash free coal (AFC), carbon, and H2 fuels were investigated with a coin type molten carbonate fuel cell. Because AFC has no electrical conductivity, its oxidation occurs via gasification to H2 and CO. An interesting behaviour of mass transfer resistance reduction at higher current density was observed. Since the anode reaction has the positive reaction order of H2, CO2 and H2O, the lack of CO2 and H2O from AFC results in a significant mass transfer resistance. However, the anode products of CO2 and H2O at higher current densities raise their partial pressure and mitigate the resistance. The addition of CO2 to AFC reduced the resistance sufficiently, thus the resistance reduction at higher current densities did not appear. Electrochemical impedance results also indicate that the addition of CO2 reduces mass transfer resistance. Carbon and H2 fuels without CO2 and H2O also show similar behaviour to AFC: mass transfer resistance is diminished by raising current density and adding CO2.

Attrition Characteristics of Catalysts for a High Efficiency Water Gas Shift Process (고효율 수성가스 공정을 위한 촉매 마모 특성)

  • Jo, Jun Beom;Kim, Jae Ho;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.111-114
    • /
    • 2010
  • In the attrition reactor for the American Society for Testing and Materials (ASTM) D5757-95, the attrition characteristics of catalysts for water gas shift reaction were investigated. The effects of attrition characteristics of low temperature shift catalysts (LTS) and high temperature shift catalysts (HTS) on fluidization phenomena and average particle size were investigated and compared with the attrition characteristics of sand particles. The particle size of catalysts was decreased and particle size distribution in attrition tube was changed due to the effect of gas injection. About 40~50 wt% samples of original catalyst particles were entrained and lost. The amount of fly ash of LTS catalyst was less than that of HTS. Also, the weight of entrained particles which had original particle size of $212{\sim}300{\mu}m$ was lower than any other cases.

A study on the coal gasification modeling in an Entrained Flow Gasifier (분류층 반응기에서의 석탄가스화 모델링 연구)

  • Ju, Jisun;Chi, Junhwa;Chung, Jaehwa
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.106.1-106.1
    • /
    • 2010
  • 석탄가스화기술은 매장량이 풍부하여 안정적인 공급이 보장되는 석탄을 이용함과 동시에 환경오염물질 감소라는 사회적 요구조건을 충족시키면서 화학제품, 석탄-가스화, 석탄-디젤화, 연료전지, 복합발전 등 다양한 분야에 응용이 가능한 장점이 있다. 특히 석탄가스화복합기술(Intergrated Coal Gasification Combined Cycle, IGCC)은 석탄을 고온, 고압하에서 가스화시켜 일산화탄소(CO), 수소($H_2$)가 주성분인 합성가스를 제조, 정제 후 가스터빈 및 증기터빈을 복합으로 구동하여 전기를 생산하는 친환경 차세대 발전기술로 주목을 받고 있다. 현재 IGCC 기술은 세계적으로 볼 때 상용화단계에 있고, 우리나라의 경우 한국형 IGCC 기술의 확보를 위한 연구사업이 진행중에 있다. 본 연구는 IGCC 발전플랜트의 발전효율을 결정하는 가장 중요한 부분이라 할 수 있는 가스화반응기의 모델링 기술을 개발하는 목적으로 진행되었다. 본 연구에서는 석탄가스화 반응기에서 발생하는 석탄의 휘발화와 Char의 표면반응 그리고 기상에서의 가스화반응등의 현상을 전산유체역학(Computational Fluid Dynamics)을 이용하여 모델링하는 방법론이 연구되었다. 해석을 위한 형상은 해석에 소요되는 시간을 줄이고, 형상이 해석결과에 미치는 영향을 줄이고자 2차원으로 구성하였다. 해석을 위한 수학적모델으로는 난류모델, 가스화반응모델, Lagrangian particle tracking, Char reaction 등을 포함하였고, 해석을 위한 Solver는 Fluent를 이용하였다. 모델링결과에 의해 예측되는 합성가스의 조성을 상용급 IGCC 가스화기의 운전결과와 비교해 본 결과 본 연구에서 설정한 모델로 예측되는 온도 및 가스농도가 실험치와 유사하게 나타남을 알 수 있었고 이를 통하여 본 연구에서 설정한 모델링방법이 적절함을 알 수 있었다.

  • PDF

Reactivity Test of Ni-based Catalysts Prepared by Various Preparation Methods for Production of Synthetic Nature Gas (합성천연가스 생산을 위한 고효율 Ni계 촉매의 제법에 따른 촉매의 반응특성 조사)

  • Jang, Seon-Ki;Park, No-Kuk;Lee, Tae-Jin;Koh, Dong-Jun;Lim, Hyo-Jun;Byun, Chang-Dae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.249-256
    • /
    • 2011
  • In this study, the Ni-based catalysts for the production of synthetic natural gas were prepared by various preparation methods such as the co-precipitation, precipitation, impregnation and physical mixing methods. The ranges of the reaction conditions were the temperatures of 250~$350^{\circ}C$, $H_2$/CO mole ratio of 3.0, the pressures of 1 atm and the space velocity of 20000 $ml/g_{-cat{\cdot}}{\cdot}h$. It was found that the catalyst prepared by precipitation method had higher CO conversion than the catalyst prepared by co-precipitation method. While the catalyst prepared by precipitation method had the formation of NiO structure, the catalyst prepared by co-precipitation method had the formation of $NiAl_2O_4$ structure. It was confirmed that Ni-based catalyst prepared by the physical mixing method had the lowest CO conversion because it was deactivated by the production of $Ni_3C$ during the methanation. As a result, it was shown clearly that Ni-based catalysts prepared by impregnation method expressed the highest catalytic activity in CO methanation.

Synthesis of Zeolites ZSM-5 and ZSM-48 from Gasification Ashes of Agricultural Wastes

  • Lin, Kuen-Song;Lin, Wen-Chiang;Chitsan Lin
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.610-615
    • /
    • 2001
  • Over 800 thousand tons per year (TPY) agricultural biowastes, such as sugar cane bagasse, sugarcane leaf, rice straw, rice husk and corn leaf, are produced in Taiwan. These biomasses are the major types of agricultural wastes and are abundantly available. However, these biowastes cause disposal and landfill problems. Ossification ashes of the agricultural biowastes containing 70-95 % amorphous silica would make the utilization system of agricultural biowaste ashes become highly economically and environmentally attractive. Experimentally, high crystallinity (99%$^{+}$) zeolites ZSM-5 and ZSM-48 synthesized from the reaction mixtures containing a silica source from ashes of these biowastes gasification were investigated. Tetrapropylammonium bromide (TPABr) and 1,6-diamino-hexane (C$_{6}$ DN) were used as structure-directing agents in syntheses of ZSM-5 and ZSM-48, respectively. X-ray powder diffraction (XRD) and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDX) data indicated that ZSM-5 or ZSM-48 with a high crystallinity can be obtained within 48 hours of crystallization in the high pressure (15-20 atm) autoclave at 393-473 K. The Si/Al ratios of synthetic zeolite products were determined by X-ray fluorescence (XRF) and induced couple plasma/mass spectroscopy (ICP/MS). It was observed that the ZSM-5 crystals a.e composed of hexagonal rod-shaped crystals with typically 8-13 пm in size by SEM. In addition, ZSM-48 crystalline materials are composed of spherical aggregates of needle-shaped or rod-like crystals with typically 2-3 пm in diameter and 6-8 пm in length.h.

  • PDF

Development of a Methanol Absorption System for the Removal of $H_2S$, COS, $CO_2$ in Syngas from Biomass Gasifier (바이오매스 가스화 내의 $H_2S$, COS, $CO_2$ 복합 제거를 위한 메탄올 흡수탑 개발)

  • Eom, Won Hyun;Kim, Jae Ho;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.23-27
    • /
    • 2012
  • To make synthetic liquid fuel from biomass such as wood pellet, energy crop and so on, a biomass to liquid (BTL) process by using a biomass gasifier with Fisher-Tropsch (FT) reaction was developed. However $H_2S$, COS and $CO_2$ in syngas from biomass gasifiers resulted in a decrease of the conversion efficiency and the deactivation of the catalyst. To remove acid gases in syngas, a lab-scale methanol absorption tower was developed and the removal characteristics of acid gases were investigated. The methanol absorption tower efficiently removed $H_2S$ and COS with a removal of $CO_2$, so it could be useful process for the BTL process.

Numerical Study for the Gasification Reaction of Heavy Residual Oil with Operating Conditions (운전변수에 따른 중잔유의 가스화반응 특성연구)

  • 나혜령;주지선
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.45-48
    • /
    • 2000
  • 중잔유는 다른 유류나 석탄에 비해 높은 황 함유율을 나타내는 특징을 지닌 원유 정제 후 남는 잔여물질로서 환경적인 측면에서 볼 때, 유황제거효율이 높은 시스템의 연료로 사용하는 것이 타당하고, 지속적으로 강화되고 있는 대기오염물질의 환경규제를 만족시키기 위해 가스화 복합발전 시스템의 연료로서 사용하는 것이 중잔유의 활용도 측면에서도 매우 유리한 점을 가지게 된다. 이미 기술 선진국을 중심으로 중잔유의 활용방안에 대한 연구 및 실용화 단계가 진행중이며, 특히, 전량 수입에 의존하고 있는 원유의 활용을 극대화해야 하는 우리의 입장에서는 환경적인 측면 못지않게 경제적인 측면도 고려하여 연료로서의 중잔유의 사용 타당성을 판단하는 것이 매우 중요하다고 하겠다.(중략)

  • PDF

A study on the Gasifier Modeling using a Chemical Equilibrium (화학평형을 이용한 가스화기 모델링에 관한 연구)

  • 정근모;임태훈;오인환;박명호
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.276-284
    • /
    • 1993
  • This study is to obtain some basic data which are prerequisite for the conceptual design of gasification process based on entrained-bed type gasifier. The Gibbs free energy minimization method is used to analyze the chemical equilibrium in the gasifier. The modeling results which consider the conventional mass balance and heat balance are compared with the experimental data published by Electric Power Research Institute. The analysis shows that the reaction in a entrained-bed gasifier is influenced mainly by the amount of oxidant, by the temperature of gasifier and by the type of coals.

  • PDF