• 제목/요약/키워드: Gaseous flow

Search Result 194, Processing Time 0.024 seconds

Shock compression of condensed matter using multi-material Reactive Ghost Fluid method : development and application (충격파와 연소 현상 하에서의 다중 물질 해석을 위한 Reactive Ghost Fluid 기법 개발 및 응용)

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.571-579
    • /
    • 2009
  • For the flow analysis of reactive compressible media involving energetic materials and metallic confinements, a Hydro-SCCM (Shock Compression of Condensed Matter) tool is developed for handling multi-physics shock analysis of energetics and inerts. The highly energetic flows give rise to the strong non-linear shock waves and the high strain rate deformation of compressible boundaries at high pressure and temperature. For handling the large gradients associated with these complex flows in the condensed phase as well as in the reactive gaseous phase, a new Eulerian multi-fluid method is formulated. Mathematical formulation of explosive dynamics involving condensed matter is explained with an emphasis on validating and application of hydro-SCCM to a series of problems of high speed multimaterial dynamics in nature.

Characteristic Study of Micro-Nozzle Performance and Thermal Transpiration Based Self Pumping in Vacuum Conditions

  • Jung, Sung-Chul;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.866-870
    • /
    • 2008
  • In this study, we designed cold gas propulsion system with minimum 0.25 mm nozzle and micro-thrust measurement system to analyze flow characteristic of micro propulsion system in ambient and vacuum condition. Argon and Nitrogen are used for propellant and the result of experiments is compared with CFD analysis and theory. But there is a point where reduced scale versions of conventional propulsion systems will no longer be practical. Therefore, a fundamentally different approach to propulsion systems was taken. That is thermal transpiration based micro propulsion system. It has no moving parts such as lubricants, pressurizing system and can pump the gaseous propellant by temperature gradient only(cold to hot). We are advancing basic research of propulsion system based on thermal transpiration in vacuum conditions and had tried experiment process and theoretical access in advance. To characterize membrane of Knudsen pump, we select Polyimide material that has low thermal conductivity(0.29 W/mK) and can stand high temperature($300^{\circ}C$) for long time. And we fabricated hole diameter 1, 0.5, 0.2, 0.1 mm using precision manufacturing. Experimental results show that pressure gradient efficiency of Knudsen pump is increased to maximum 82% according to Knudsen number and thick membranes are more effective than thin membranes in transition flow regime.

  • PDF

Cold flow tests of Gas-centered swirl coaxial injectors (Gas-centered swirl coaxial 분사기의 상압수류시험)

  • Jeon, Jae-Hyoung;Hong, Moon-Geun;Kim, Jong-Gyu;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.16-19
    • /
    • 2011
  • An experimental study on the spray characteristics of Gas-centered swirl coaxial injectors(GCSCI) for high-performance staged combustion rocket engines has been carried out using cold flow tests. In this study, water and gaseous nitrogen are used as working fluids and a back-lit photography technique with image processing for the measurements of spray characteristics. Our study is focused on the effect of injector geometries like as gap thickness of liquid nozzle and gas nozzle and momentum flux ratio for fundamental understanding of the injectors.

  • PDF

Recovery of water and contaminants from cooling tower plume

  • Macedonio, Francesca;Frappa, Mirko;Brunetti, Adele;Barbieri, Giuseppe;Drioli, Enrico
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.222-229
    • /
    • 2020
  • Membrane assisted condenser is an innovative membrane operation that exploits the hydrophobic nature of microporous membranes to promote water vapor condensation and recovery. It can be used for water and chemicals recovery from waste gaseous streams. In this work, the testing of membrane condenser for water and ammonia recovery from synthetic streams (i.e., a saturated air stream with ammonia) simulating the plume of cooling tower is illustrated. The modeling of the process was carried out for predicting the membrane-based process performance and for identifying the minimum operating conditions for effectively recovering liquid water. The experimental data were compared with the results achieved through the simulations showing good agreement and confirming the validity of the model. It was found that the recovery of water can be increased growing the temperature difference between the plume and the membrane module (DT), the relative humidity of the plume (RHplume) and the feed flow rate on membrane area ratio. Moreover, the concentration of NH3 in the recovered liquid water increased with the growing DT, at increasing NH3 concentration in the fed gaseous stream and at growing relative humidity of the feed.

Numerical Study of the Post Combustion Chamber of Grate Type Incinerator in Daejon 4th Industrial Complex (대전 4공단 소각로 후연소로 모델 연구)

  • Kim Hey-Suk;Shin Mi-Soo;Jang Dong-Soon;Park Byung-Soo;Um Tae-In
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.133-138
    • /
    • 2002
  • A 3-D axisymmetric computer program is developed to predict the NO behavior in SNCR system for the stoker incinerator with the waste treatment capacity, 200ton/day. To this end a turbulent reacting flow field calculation is made using proper assumption and empiricism. The stoker bed is assumed to be a homogeneous waste-volatilized gaseous state. The initial composition or reactants are assumed based on the data of the ultimate analysis. Turbulent is resolved by k-e model and turbulent reaction is handled by eddy-breakup model harmonized with empirical chemistry data for gaseous combustion, NO and urea reaction. The liquid droplet is traced by Lagrangian method incorporated by aerodynamic drag, Coriolis and crntrifugal forces. Radiation is treated by sensible heat loss model. Calculation results are in good agreement with experimental data at the outlet of post combustion chamber in Daejon 4th industrial complex. The flue gas shows the temperature range of $900\sim1000^{\circ}C$, velocity of 5m/s and NO concentration of 140ppm at the exit while the measured temperature, flue gas velocity and NO concentration are $967^{\circ}C$, $3\sim4m/s$ and $100\sim200ppm$respectively. Using the developed computer program a parametric study has been made with the variation of heat content of waste, castable length and SNCR variables for the determination of proper injector location. In general, the calculated results are consistent and physically acceptable.

  • PDF

Enhancement of Regression Rate of Hybrid Rocket Fuel by Oxidizer Injection Condition (산화제 유입조건에 따른 하이브리드 로켓 연료의 연소율 향상)

  • Hwang Youngchun;Lee Changjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.66-71
    • /
    • 2005
  • In this study the regression rate of hybrid rocket fuel has been investigated by two methods. First method is to use swirl injectors for enhancement of regression rate. And second method is the modification of the helical grain deriving improvement of combustion area and generating swirl flow. Tests have been done with PMMA and gaseous oxygen. In this paper the incline angle of the helical grain was varied to find the optimal condition to obtain the max regression rate for a given operational condition.

  • PDF

The Synthesis of $BaTiO_3$ using continuous process in a bubble column reactor (기포탑반응기에서 연속공정을 이용한 $BaTiO_3$ 분말의 제조)

  • 현성호;김정환;허윤행
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 1996
  • The synthesis of high purity and ultra-fine $BaTiO_3$ by precipitation with gaseous $NH_3$ as precipitator was investigated to find an alternative process to solve various problems of recent wet methods. A synthesis process for $BaTiO_3$ powder using $NH_3$ gas as a precipitator in a bubble column reactor was experimentally successful in developing the production process of piezoelectric ceramic $BaTiO_3$ powder. And a 2.33m1/sec is approprite for the feed flow rate, $BaTiO_3$ powder produced under above the condition is spherical type, its particle size was about $0.2{\mu}m$.

  • PDF

Characteristics of Self-excited Combustion Oscillation and Combustion Control by Forced Pulsating Mixture Supply

  • Yang, Young-Joon;Fumiteru Akamatsu;Masashi Katsuki;Lee, Chi-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1820-1831
    • /
    • 2003
  • Characteristics of self-excited combustion oscillation are experimentally studied using confined premixed flames stabilized by a rearward-facing step. A new idea to suppress combustion oscillation was applied to the flames. The characteristics of unsteady combustion were examined, which is driven by forced pulsating mixture supply that can modulate its amplitude and frequency. The self-excited combustion oscillation having weaker flow velocity fluctuation intensity than that of the forced pulsating supply can be suppressed by the method. The effects of the forced pulsation amplitude and frequency on controlling self-excited combustion oscillations were also investigated comparing with the steady mixture supply. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations, and it also exhibits desirable performances, from a practical point of view, such as high combustion load and reduced pollutant emissions of nitric oxide.

On the Effect of Presumed PDF and Intermittency on the Numerical Simulation of a Diffusion Flame

  • Riechelmann, Dirk;Fujimori, Toshiro
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.23-28
    • /
    • 2001
  • In the present work, the effect of PDF selection and intermittency on the result of the numerical simulation are examined by the simulation of a turbulent methane-air jet diffusion flame. As to the PDFs, beta-function and clipped Gaussian are considered. Results for the pure mixing jet are compared with experimental results. Then, the turbulent flame is calculated for the same conditions and the results obtained for the several models are compared. It is found that the clipped Gaussian distribution coupled with consideration of intermittency recovers the experimental data very well. As to the reacting flow results, the main overall properties of the turbulent jet diffusion flame such as maximum flame temperature are less affected by the choice of the PDF. Flame height and NO emissions, on the contrary, appear to be significantly influenced.

  • PDF

Experimental Studies on Atomization Characteristics in Diesel Fuel Spray(I) (디젤분무특성에 관한 실험적 연구(I))

  • 박호준;장영준
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.76-84
    • /
    • 1990
  • To study diesel fuel spray behavior, an experimental study was undertaken to investigate injection characteristics in vary ing back pressure and atomization mechanism in a non-evaporating diesel spray. Generally, injection characteristics is the curve of fuel flow plotted against time. The area under this curve is equal to the total quantity of fuel discharged for one injection. The method that measures rate of injection is long tube-type fuel rate indicator. Diesel spray injected into a quiescent gaseous environment under high pressure is observed by taking high speed camera by the focused shadow photographs. The results show that, at the start of injection, as the injected fuel rushes into the quiescent atmosphere the spray angle becomes large. Finally the spray stabilizes at a constant cone angle. Spray penetration length increases with the injection pressure.

  • PDF