• Title/Summary/Keyword: Gaseous

Search Result 1,368, Processing Time 0.032 seconds

Heterojunction of FeOOH and TiO2 for the Formation of Visible Light Photocatalyst

  • Rawal, Sher Bahadur;Chakraborty, Ashok Kumar;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2613-2616
    • /
    • 2009
  • FeOOH/$TiO_2$, a heterojunction structure between FeOOH and $TiO_2$, was prepared by covering the surface of the $\sim$100-nm-sized FeOOH particles with Degussa P25 by applying maleic acid as an organic linker. Under visible light irradiation (${\lambda}{\geq}$ 420 nm), FeOOH/$TiO_2$ showed a notable photocatalytic activity in removal of gaseous 2-propanol and evolution of $CO_2$. It was found that FeOOH reveals a profound absorption in the spectral range of 400 - 550 nm, and its valence band (VB) level is located relatively lower than that of $TiO_2$. The considerable photocatalytic efficiency of the FeOOH/$TiO_2$ under visible light irradiation was therefore deduced to be caused by the hole transfer between the VB of FeOOH and $TiO_2$.

SECULAR EVOLUTION OF BARRED GALAXIES

  • ANN HONG BAE
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.241-248
    • /
    • 2003
  • Owing to several observational evidences and theoretical predictions for morphological evolution of galaxies, it is now widely accepted that galaxies do evolve from late types to early ones along the Hubble sequence. It is also well established that non-axisymmetric potentials of bar-like or oval mass distributions can change the morphology of galaxies significantly during the Hubble time. Here, we review the observational and theoretical grounds of the secular evolution driven by bar-like potentials, and present the results of SPH simulations for the response of the gaseous disks to the imposed potentials to explore the secular evolution in the central regions of barred galaxies.

KINEMATICAL PROPERTIES OF PLANETARY NEBULAE WITH WR-TYPE NUCLEI

  • DANEHKAR, ASHKBIZ;STEFFEN, WOLFGANG;PARKER, QUENTIN A.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.163-167
    • /
    • 2015
  • We have carried out integral field unit (IFU) spectroscopy of $H{\alpha}$, [$N{\small{II}}$] and [$O{\small{III}}$] emission lines for a sample of Galactic planetary nebulae (PNe) with Wolf-Rayet (WR) stars and weak emission-line stars (wels). Comparing their spatially-resolved kinematic observations with morpho-kinematic models allowed us to disentangle their three-dimensional gaseous structures. Our results indicate that these PNe have axisymmetric morphologies, either bipolar or elliptical. In many cases the associated kinematic maps for the PNe around hot central stars also reveal the presence of so-called fast low-ionization emission regions.

Chemical Properties of Star Forming Galaxies in the Cluster Environment

  • Chung, Jiwon;Rey, Soo-Chang;Kim, Suk;Sung, Eon-Chang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.88.1-88.1
    • /
    • 2012
  • We utilize Sloan Digital Sky Survey DR7 spectroscopic data of ~340 star forming galaxies in the Virgo cluster to investigate their chemical properties depending on the environments. The chemical evolution of galaxies is linked to their star formation histories (SFHs), as well as to the gas interchange in different environments. In this sense, galaxy metallicity could be an observable parameter providing information on the impact of the environment on the galaxy SFH and/or the galaxy gas content. Thus, we derived gaseous metallicity (e.g., oxygen abundance) of star forming galaxies located in different regions of the Virgo cluster using well-known empirical calibrations. We also estimated their star formation rate (SFR) using H alpha luminosity. Inorder to investigate the chemical properties of these galaxies, we examined relations between various parameters: metallicity vs. luminosity, SFR vs. luminosity, and metallicity vs. cluster-centric radius. From our results, we discuss environmental effects of cluster to the chemical properties of star forming galaxies.

  • PDF

Effect of temperature gradient and residence time on droplet formation of gaseous Di-Octyl Phthalate (DOP가스의 액적형성에 미치는 온도경사 및 체류시간의 영향)

  • Lee, Myong-Hwa;Park, Byung Hyun
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Generally, large amounts of DOP(Di-Octyl Phthalate) chemicals are used as plasticizers in PVC compound manufacturing processes. However, it is very important to collect DOP species immediately from a workplace in order to protect worker's heath and recover them. To accomplish these objectives, we need to understand the droplet formation and growth mechanisms of DOP species. In this study, two important parameters such as temperature gradient and residence time were considered to clarify these mechanisms. We found that residence time is very critical to determine the droplet size distribution of DOP, whereas temperature gradient in general operating conditions(less than $-6.8^{\circ}C/cm$) is negligible.

Correlation of $CO_2$ Concentration with Number of Passengers and Tunnel Regions in the KTX Cabin (KTX 객실의 $CO_2$ 농도와 승객 수 및 터널구간과의 상관관계)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Park, Eun-Young
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.192-195
    • /
    • 2006
  • With increasing concerns of indoor air quality, $CO_2$ concentration in the public transportation, such as train, bus, and subway, draws big interests. The $CO_2$ concentration in the indoor air is regarded as index of ventilation status rather than that of adverse health effect. In this study, we measured the time-series of $CO_2$ concentrations in the KTX cabin during the journey of Gyongbu-line (Seoul-Busan) and Honam-line (Seoul-Mokpo) with the number of passengers on board. At the same time, the concentration of particulate matter (PM), temperature, humidity and gaseous pollutants including HCHO and VOCs were monitored. It is found that the $CO_2$ concentration was correlated linearly with number of passengers and was highly correlated with tunnel regions where the ventilation unit (flap) was closed.

  • PDF

A Study on the Performance Analysis of Mobile Fuel Cell (모바일용 연료전지의 성능해석에 관한 연구)

  • Kim, Kwang-Soo;Choi, Jong-Pil;Jeong, Chang-Ryeol;Jang, Jae-Hyeok;Jeon, Byeong-Hee;Kim, Byeong-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.115-121
    • /
    • 2008
  • In this paper, a three-dimensional computational fluid dynamic model of a proton exchange membrane fuel cell(PEMFC) with serpentine flow channel is presented. A steady state, single phase and isothermal numerical model has been established to investigate the influence of the GDL (Gas Diffusion Layer) parameters. The GDL is made of a porous material such as carbon cloth, carbon paper or metal wire mesh. For the simplicity, the GDL is modeled as a block of material having numerous pathways through which gaseous reactants and liquid water can pass. The porosity, permeability and thickness of the GDL, which are employed in the model parameters significantly affect the PEMFC performance at the high current region.

Microstructural Changes of $SiO_2-Si$ During Liquid-Phase Sintering (액상소결단계에서 $SiO_2-Si$의 미세조직 변화)

  • 강대갑;정충환
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.443-447
    • /
    • 1994
  • Compacts of mixed SiO2-Si powder were liquid phase sintered at 145$0^{\circ}C$ for up to 60 min in a hydrogen atmosphere. In contrast to the conventional microstructures of liquid phase sintered materials, the specimens showed that the solid phase of SiO2 formed a matrix while the liquid phase of Si was the dispersed in the solid matrix. The dispersion of liquid Si pockets was attributed to the high wetting angle of liquid Si on solid SiO2. Because of relatively high solubility of SiO2 in liquid Si at 145$0^{\circ}C$, SiO2 particles accommodated their shape via a solution-reprecipitation process. The liquid Si pockets grew by coalescing with their neighbour pockets. In the latter stage of the sintering, plate-shape grains appeared in the liquid Si pockets. The grains were SiO2 phase precipitated from the liquid Si which was oversaturated with oxygen during cooling to room temperature. By the formation and subsequent removal of the gaseous SiO phase due to the reaction between SiO2 and Si, the specimens became porous.

  • PDF

Carbon Materials as Catalysts

  • Lim, Seong-Yop;Jung, Doo-Hwan;Yoon, Seong-Ho;Mochida, Isao
    • Carbon letters
    • /
    • v.9 no.1
    • /
    • pp.47-60
    • /
    • 2008
  • Understanding the exact structure and surface characteristics of carbon materials is very important for design, synthesis, and utilization of the best carbon form with particular functions and high performance for practical applications such as selective adsorption adsorbents, energy storage materials, catalysts or catalyst supports, etc. This review paper focuses on carbon surface properties and the interaction between gaseous or liquid substances and carbon surface. Catalytic functions of carbon materials are reviewed including recent progress in synthesis and applications of nano-carbons.

Synthesis of Ultrafine Silicon Nitride Powders by the Vapor Phase Reaction (기상반응에 의한 $Si_3N_4$ 미세분말의 합성)

  • 유용호;어경훈;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.44-49
    • /
    • 2000
  • Silicon nitride powders, were synthesized by the vapor phase reaction using SiH4-NH3 gaseous mixture. The reaction temperature, ratio of NH3 to SiH4 gas and the overall gas quantity were varied. The synthesized powders were characterized using X-ray, TEM, FT-IR and EA. The synthesized silicon nitride powders were in amorphous state, and the average particle size was about 100nm. TEM analysis revealed that the particle size decreased with increasing reaction temperature and gas flow quantity. As-received amorphous powders were annealed in nitrogen atmosphere at 140$0^{\circ}C$ for 2h, then the powders were completely crystallized at 0.2 ratio of NH3 to SiH4.

  • PDF