• Title/Summary/Keyword: Gaseous

Search Result 1,368, Processing Time 0.032 seconds

Experimental study of combustion stability assessment of injector (분사기의 연소 안정성 평가를 위한 실험적 방법 연구)

  • Seo, Seong-Hyeon;Lee, Kwang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.61-66
    • /
    • 2004
  • The objective of the present study is to develop methodology for the assessment of combustion stability of liquid rocket injectors. To simulate actual combustion occurring inside of a thrust chamber, a fullscale injector has been employed in the study, which bums gaseous oxygen and mixture of methane and propane. The main idea of the experiment is that the mixing mechanism is considered as a dominant factor significantly affecting combustion instability in a fullscale thrust chamber. A single split triplet injector has been used with an open-end cylindrical combustion chamber. The characteristics revealed by excited dynamic pressures in gaseous combustion show degrees of relative acoustic damping depending on operating conditions. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

Characteristics of Atmosphere-rice Paddy Exchange of Gaseous and Particulate Reactive Nitrogen in Terms of Nitrogen Input to a Single-cropping Rice Paddy Area in Central Japan

  • Hayashi, Kentaro;Ono, Keisuke;Matsuda, Kazuhide;Tokida, Takeshi;Hasegawa, Toshihiro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.202-216
    • /
    • 2017
  • Nitrogen (N) is an essential macronutrient. Thus, evaluating its flows and stocks in rice paddy ecosystems provides important insights into the sustainability and environmental loads of rice production. Among the N sources of paddy fields, atmospheric deposition and irrigation inputs remain poorly understood. In particular, insufficient information is available for atmosphere-rice paddy exchange of gaseous and particulate reactive N (Nr, all N species other than molecular N) which represents the net input or output through dry deposition and emission. In this study, we assessed the N inputs via atmospheric deposition and irrigation to a Japanese rice paddy area by weekly monitoring for 2 years with special emphasis on gas and particle exchange. The rice paddy during the cropping season acted as a net emitter of ammonia ($NH_3$) to the atmosphere regardless of the N fertilizer applications, which reduced the effects of dry deposition to the N input. Dry N deposition was quantitatively similar to wet N deposition, when subtracting the rice paddy $NH_3$ emissions from N exchange. The annual N inputs to the rice paddy were 3.2 to $3.6\;kg\;N\;ha^{-1}\;yr^{-1}$ for exchange, 8.1 to $9.8\;kg\;N\;ha^{-1}\;yr^{-1}$ for wet deposition, and 11.1 to $14.5\;kg\;N\;ha^{-1}\;yr^{-1}$ for irrigation. The total N input, 22.8 to $27.5\;kg\;N\;ha^{-1}\;yr^{-1}$, corresponded to 38% to 55% of the N fertilizer application rate and 53% to 67% of the brown rice N uptake. Monitoring of atmospheric deposition and irrigation as N sources for rice paddies will therefore be necessary for adequate N management.

Recovery of water and contaminants from cooling tower plume

  • Macedonio, Francesca;Frappa, Mirko;Brunetti, Adele;Barbieri, Giuseppe;Drioli, Enrico
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.222-229
    • /
    • 2020
  • Membrane assisted condenser is an innovative membrane operation that exploits the hydrophobic nature of microporous membranes to promote water vapor condensation and recovery. It can be used for water and chemicals recovery from waste gaseous streams. In this work, the testing of membrane condenser for water and ammonia recovery from synthetic streams (i.e., a saturated air stream with ammonia) simulating the plume of cooling tower is illustrated. The modeling of the process was carried out for predicting the membrane-based process performance and for identifying the minimum operating conditions for effectively recovering liquid water. The experimental data were compared with the results achieved through the simulations showing good agreement and confirming the validity of the model. It was found that the recovery of water can be increased growing the temperature difference between the plume and the membrane module (DT), the relative humidity of the plume (RHplume) and the feed flow rate on membrane area ratio. Moreover, the concentration of NH3 in the recovered liquid water increased with the growing DT, at increasing NH3 concentration in the fed gaseous stream and at growing relative humidity of the feed.

Air Contamination in an Underground Commercial Floor assayed by GAseous Pollutants, Dusts and Mutagenicity (빌딩 地下商街의 空氣性狀 및 분자의 變異原性)

  • 兪榮植
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.2
    • /
    • pp.46-52
    • /
    • 1987
  • There are many factors such as airtighteness and high density of merchandises or passengers that contaminate indoor air in underground commercial floor. So it is very important to know air quality and quantity of contamination in underground market increasing in number lately. It was from these viewpoints that gaseous pollutants, dusts and mutagenicity of organic compounds extracted from dusts in an underground market were investigatd. Organic ompounds (tar) were extracted by Soxhlet extractor with benzene as a solvent. Mutagenicities of these extracts were evaluated by the preincubation method using Salmonella typhimurium TA 100 and TA 98 strains with and without S9mix. The results obtained were as follows: It seemed to be under the influence of outdoor air that the concentrations of $CO, CO_2, NO, NO_2$ and dusts were higher in winter than summer. The concentration of $CO_2$ was higher in indoor than outdoor, but the concentration of NOx was similar in both sampling areas. Metal contents in dusts attached to the ventilation ducts were as follows showing in order of high concentration : Fe (9000-22000ppm), Zn(1200-2300ppm) and Pb (280-590ppm). The contents of tar were 6-33% of dusts, and higher than those from dusts collected by high volume air sampler. The extracts from dusts attached to the inlet duct exhibited lower mutagenicity than those from dusts attached to the outlet duct. This finding seemed to suggest that mutagenic substances were in creasing in underground. There was no seasonal difference of mutagenicity toward TA 98. Toward TA 100 in the presence of S9mix, the mutagenicity was about 3 fold higher in winter than summer. The mutagenicities of tar extracted from dusts collected by high volume air sampler were different from those attached to the ventilation ducts. The former showed 2-3 fold higher mutagenicity than the latter toward TA 100. However no difference showed between the former and the latter toward TA 98 in the absence of S9mix, but the former was 4-5 fold higher than the latter in the presence of S9mix.

  • PDF

Development of Estimation Methods of Pollutant Emissions from Railroad Diesel Rolling Stocks (철도디젤차량에서 배출되는 오염물질의 배출량 산정방법 개발)

  • 박덕신;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.539-553
    • /
    • 2004
  • Up to the present time, many methods to estimate emissions from a particular diesel engines have wholly depended on the quantity of diesel fuel consumed. Then, the recommended emission factors were normalized by fuel consumption, and further total activity was estimated by the total fuel consumed. One of main purposes in the study is newly to develop emission factors for the railroad diesel rolling stock (RDRS) and to estimate a total amount of major gaseous pollutants from the RDRS in Korea. Prior to develop a Korean mode emission factor. the emission factor from the USEPA was simply applied for comparative studies. When applying the USEPA emission factors, total exhaust emissions from the RDRS in Korea were estimated by 28,117tons of NOx, 2,832.3tons of CO, and 1,237.5tons of HC, etc in 2001. In this study, a emission factor for the RDRS, so called the KoRail mode (the Korean Railroad mode) has been developed on the basis of analyzing the driving pattern of the Gyeongbu-Line especially for the line-haul mode. Explicitly to make the site specific emission factors, many uncertainty problems concerning weighting factors for each power mode, limited emission test, incomplete data for RDRS, and other important input parameters were extensively examined. Total exhaust emissions by KoRail mode in Korea were estimated by 10,960tons of NOx, and 4,622tons of CO, and so on in the year of 2001. The emissions estimated by the USEPA mode were 2.6 times higher for NOx, and 1.6 times lower for CO than those by the KoRail mode. As a conclusion, based on the emission calculated from both the USEPA mode and the KoRail mode, the RDRS is considered as one of the significant mobile sources for major gaseous pollutants and thus management plans an(1 control strategies for the RDRS must be established to improve air quality near future in Korea.

Performance of a Hellow Fiber Membrane Diffuser for the Biological Removal of Gaseous BTX (Diffuer 형태의 중공사막 생물반응기를 이용한 기체상 BTX 제거)

  • Son, Young-Gyu;Khim, Jee-Hyeong;Song, Ji-Hyeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.25-32
    • /
    • 2006
  • In this study, a novel bioreactor system using a diffuser type hollow fiber membranes (hollow fiber membrane diffuser, HFMD) was applied to investigate the feasibility and biodegradation capacity for the treatment of a gaseous mixture consisting of benzene, toluene and p-xylene(BTX). First, A mixed culture pre-acclimated to toluene effectively biodegraded the BTX mixture at an overall removal efficiency of approximately 70% for a 20-day operational period. It was found that the biodegradation of toluene was slightly inhibited because of the presence of benzene and p-xylene. Second, the elimination capacity (EC) of total BTX increased up to 360 $g/m^3/hr$, which was substantially higher than maximum ECs for BTEX reported in the biofiltration literature. Consequently, the hollow fiber membrane diffuser was considered as an alternative method over other conventional VOC-treating technologies such as biofilters.

A Study on the Adsorption Effect of Korean zeolite "Clinoptilolite" as Cigarette Cavity Filter Additive. (한국산 Zeolite의 필터첨가제로서의 흡착효과에 관하여)

  • Yang, Gwang-Gyu;Song, Chi-Hyeon;Kim, Chan-Ho
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.2 no.1
    • /
    • pp.8-16
    • /
    • 1980
  • The cavity of triple filter was filled with the mixture of clinoptilolite and charcoal(1:1, V/V). The particle size of clinoptilolite was 30$\pm$5 A.S.T.M mesh. The reduction effects of the important gaseous components by this mixture were obtained as follows: 1) In comparison with the normal cellulose acetate niter, the contents of nicotine and T.P.M. were reduced about 35% and 22% respectively. 2) Many aliphatic and cyclic compounds were also substantially reduced in an average of 60%. 3) In contrast with the charcoal, the removal efficiency of clinoptilolite was revealed as higher (15-20%) in case of aliphatic compounds than the one (10-15%) of cyclic compounds. The above results showed us that the removal function of gaseous components was quite complementary each other (charcoal and clinoptilolite).

  • PDF

A study on Behavior of Turbulent Transient Jets with Butane and Propane (Butane 및 propane의 비정상 난류 제트 특성에 관한 연구)

  • Lee, Beom-Ho;Song, Hak-Hyun;Cho, Seung-Hwan;Hong, Sung-Tae;Lee, Dae-Yup;Lee, Tae-Woo
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.74-82
    • /
    • 2010
  • In order to understand the behavior of transient gaseous injection used in an LPG (Liquefied Petroleum Gas) engine, turbulent incompressible transient jets with butane and propane were measured and analyzed at pressures of 1.5 bar and 2.0 bar with injector diameters of 3 mm and 5 mm. Mie-scattering method with a tracer was used, and images were processed to investigate the behavior of butane and propane jets. Distances from the nozzle to transition region were measured as $L_e/d_{inj}$=4.35~19.4, where $L_e$ and $d_{inj}$ indicate respectively a distance from nozzle to transition point and nozzle diameter. Slits and tubes around jet at near-field were introduced to measure the effect of entrainment and the diameter of jet, which revealed that the entrainment of surrounding air is significant for developing jet diameter. When the entrainment is restricted, the behavior of jet became deviating from the baseline. It was found that the virtual origin located outside of a nozzle towards jet tip within the conditions of this work, and its location was estimated as $x_o/d_{inj}$=0.56~7.25, where $x_o$ is a distance from nozzle to virtual origin.

Flame Structure and Combustion Dynamic Characteristics of GCH4/GO2 in Bi-Swirl Coaxial Injectors (동축 와류형 분사기에서 기체메탄/기체산소 화염 구조와 연소 동특성)

  • Bak, Sujin;Hwang, Donghyun;Ahn, Kyubok;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.28-38
    • /
    • 2019
  • To investigate the relation between flame structure and combustion dynamic characteristics in bi-swirl coaxial injectors for a liquid rocket engine, combustion experiments were performed using gaseous methane and gaseous oxygen. CH* radicals and pressure fluctuations were simultaneously measured by changing the injector geometries such as recess length/orifice diameter and the flow conditions such as equivalence ratio/oxidizer mass flow rate. As the injector geometries affected the velocities and mixing of the propellants, the change in flame structures was observed. From a result of the frequency analysis, it was confirmed that combustion dynamic characteristics varied according to the injector geometry/flow condition and combustion instabilities could occur under specific recess length/flow conditions.

Optimal Operation Condition of Spray Drying Sorber for Simultaneous Removal of Acidic and Organic Gaseous Pollutants (산성 및 유기성 가스의 동시제거를 위한 준건식 세정시스템의 적정 운전 조건)

  • 백경렬;구자공
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.59-64
    • /
    • 2001
  • The effect of major operating parameters in spray drying sorber(=SDS) for automatic control for the simultaneous removal of acidic and organic gaseous pollutants from solid waste incinerator was performed. The field experiment was carried out in pilot scale test for the quantification of major operating parameters of hydrophilic and the hydrophobic pollutants. The removal efficiencies of $SO_2$and HCI in the 5wt% slurry condition were being increased with the increase of the stoichiometric ration which is the molecular ratio of lime to the pollutant concentration, and with the decrease of inflow flue gas temperature in the pilot SDS reactor. The removal efficiency along the height of spray drying sorber was closely related to the temperature profile, and more than 90% of total removal efficiency was achieved in an absorption region. For the removal of acidic gas the optimum operating condition considering the economics and a stable operation is the 5wt% of slurry concentration, 1.2 of stoichiometric ratio and 25$0^{\circ}C$ of inflow flue gas temperature. For the organic gases of benzene and toluene the removal efficiencies were 20-60% which is much lower than that of acidic gas. The best removal efficiency was obtained at 1.5 of stoichiometric ratio and 25$0^{\circ}C$ of inflow flue gas temperature. The organic\`s removal efficiency along the height of spray drying sorber was quite different from that of acidic gas, that is, more than 60% of the total removal efficiency for benzene and 90% of the total removal for toluene were achieved in the dried adsorption region, which was formed at the lower or exit part of the reactor.

  • PDF