• Title/Summary/Keyword: Gaseous

Search Result 1,368, Processing Time 0.028 seconds

A Study on Transient Injection Rate Measurement of Gas Fuels Using Force Sensor (힘센서를 이용한 기상 연료의 과도적 분사율 계측에 관한 연구)

  • Jaehyun, Lee;Gyuhan, Bae;Youngmin, Ki;Seoksu, Moon
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.181-187
    • /
    • 2022
  • For carbon neutrality, direct-injection hydrogen engines are attracting attention as a future power source. It is essential to estimate the transient injection rate of hydrogen for the optimization of hydrogen injection in direct injection engines. However, conventional injection rate measurement techniques for liquid fuels based on the injection-induced fuel pressure change in a test section are difficult to be applied to gaseous fuels due to the compressibility of the gas and the sealing issue of the components. In this study, a momentum flux measurement technique is introduced to obtain the transient injection rate of gaseous fuels using a force sensor. The injection rate calculation models associated with the momentum flux measurement technique are presented first. Then, the volumetric injection rates are estimated based on the momentum flux data and the calculation models and compared with those measured by a volumetric flow rate meter. The results showed that the momentum flux measurement can detect the injection start and end timings and the transient and steady regimes of the fuel injection. However, the estimated volumetric injection rates showed a large difference from the measured injection rates. An alternative method is suggested that corrects the estimated injection rate results based on the measured mean volumetric flow rates.

High-resolution mass models of the Large Magellanic Cloud

  • Kim, Shinna;Oh, Se-Heon;For, Bi-Qing;Sheen, Yun-Kyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.71.1-71.1
    • /
    • 2021
  • We perform disk-halo decomposition of the Large Magellanic Cloud (LMC) using a novel HI velocity field extraction method, aimed at better deriving its HI kinematics and thus mass distribution in the galaxy including both baryons and dark matter. We decompose all the line-of-sight velocity profiles of the combined HI data cube of the LMC, taken from the Australia Telescope Compact Array (ATCA) and Parkes radio telescopes with an optimal number of Gaussian components. For this, we use a novel tool, the so-called BAYGAUD which performs profile decomposition based on Bayesian MCMC techniques. From this, we disentangle turbulent non-ordered HI gas motions from the decomposed gas components, and produce an HI bulk velocity field which better follows the global circular rotation of the galaxy. From a 2D tilted-ring analysis of the HI bulk velocity field, we derive the rotation curve of the LMC after correcting for its transverse, nutation and precession motions. The dynamical contributions of baryons like stars and gaseous components which are derived using the Spitzer 3.6 micron image and the HI data are then subtracted from the total kinematics of the LMC. Here, we present the bulk HI rotation curve, the mass models of stars and gaseous components, and the resulting dark matter density profile of the LMC.

  • PDF

Characteristic analysis and condenser design of gas helium circulation system for zero-boil-off storage tank

  • Jangdon Kim;Youngjun Choi;Keuntae Lee;Jiho Park;Dongmin Kim;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.65-69
    • /
    • 2023
  • Hydrogen is an eco-friendly energy source and is being actively researched in various fields around the world, including mobility and aerospace. In order to effectively utilize hydrogen energy, it should be used in a liquid state with high energy storage density, but when hydrogen is stored in a liquid state, BOG (boil-off gas) is generated due to the temperature difference with the atmosphere. This should be re-condensed when considering storage efficiency and economy. In particular, large-capacity liquid hydrogen storage tank is required a gaseous helium circulation cooling system that cools by circulating cryogenic refrigerant due to the increase in heat intrusion from external air as the heat transfer area increases and the wide distribution of the gas layer inside the tank. In order to effectively apply the system, thermo-hydraulic analysis through process analysis is required. In this study, the condenser design and system characteristics of a gaseous helium circulation cooling system for BOG recondensation of a liquefied hydrogen storage tank were compared.

Stability of a Silica Membrane in the HI-$H_2O$ Gaseous Mixture (HI-$H_2O$ 기상 혼합물에서 Silica 막의 안정성)

  • HWANG Gab-Jin;PARK Chu-Sik;LEE Sang-Ho;Choi Ho-Sang
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.201-206
    • /
    • 2004
  • The stability of the prepared silica membrane by chemical vapor deposition (CVD) method in the HI-$H_2O$ gaseous mixture was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical IS process. Porous $\alpha$-alumina having pore size of 100 nm was modified by the different CVD temperature using tetraethoxysilane as the Si source. The CVD temperature was $700^{\circ}C$, $650^{\circ}C$, and $600^{\circ}C$. The $H_2$/H$_2$ selectivities of the modified membranes which were measured by single-component permeation experiment showed 43.2, 12.6, and 8.7 at $600^{\circ}C$ for the M1 (CVD temperature was $700^{\circ}C$), M2 (CVD temperature was $650^{\circ}C$) and M3 membranes (CVD temperature was $600^{\circ}C$), respectively. Stability experiment in the HI-$H_2O$ gaseous mixture was carried out at $450^{\circ}C$. The prepared silica membrane at $600^{\circ}C$ of CVD temperature was more stable than that at the other CVD temperature.

THE INITIAL CONDITIONS AND EVOLUTION OF ISOLATED GALAXY MODELS: EFFECTS OF THE HOT GAS HALO

  • Hwang, Jeong-Sun;Park, Changbom;Choi, Jun-Hwan
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.1-32
    • /
    • 2013
  • We construct several Milky Way-like galaxy models containing a gas halo (as well as gaseous and stellar disks, a dark matter halo, and a stellar bulge) following either an isothermal or an NFW density profile with varying mass and initial spin. In addition, galactic winds associated with star formation are tested in some of the simulations. We evolve these isolated galaxy models using the GADGET-3 N-body/hydrodynamic simulation code, paying particular attention to the effects of the gaseous halo on the evolution. We find that the evolution of the models is strongly affected by the adopted gas halo component, particularly in the gas dissipation and the star formation activity in the disk. The model without a gas halo shows an increasing star formation rate (SFR) at the beginning of the simulation for some hundreds of millions of years and then a continuously decreasing rate to the end of the run at 3 Gyr. Whereas the SFRs in the models with a gas halo, depending on the density profile and the total mass of the gas halo, emerge to be either relatively flat throughout the simulations or increasing until the middle of the run (over a gigayear) and then decreasing to the end. The models with the more centrally concentrated NFW gas halo show overall higher SFRs than those with the isothermal gas halo of the equal mass. The gas accretion from the halo onto the disk also occurs more in the models with the NFW gas halo, however, this is shown to take place mostly in the inner part of the disk and not to contribute significantly to the star formation unless the gas halo has very high density at the central part. The rotation of a gas halo is found to make SFR lower in the model. The SFRs in the runs including galactic winds are found to be lower than those in the same runs but without winds. We conclude that the effects of a hot gaseous halo on the evolution of galaxies are generally too significant to be simply ignored. We also expect that more hydrodynamical processes in galaxies could be understood through numerical simulations employing both gas disk and gas halo components.

Prevention and Control of composting Odors Using Microbial Inocula, KMT-199 (미생물 종균제(KMT-199)를 이용한 퇴비제조 공정의 악취제거)

  • Nam, Y.;Kim, G.J.;Sung, K.C.;Park, K.D.;Kim, J.M.
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.57-65
    • /
    • 1999
  • Generation of gaseous ammonia has been a major problem in composting facilities. Microbial inocula. KMT-199(brand name: CompoBac$^{TM}$). was developed in INBI0NET CORPORATION and tested in the field for its ammonia reducing capability. When KMT-199 was applied. a ten-fold increase of mesophilic and thermophilic microorganisms was observed during the early stage of composting process. Also. the temperature and pH of early stage compost increased at a higher rate when compared to control. KMT-199 treated compost reached highest temperature of $75^{\circ}C$at day 9, indicating treatment could shift the maximum composting temperature to 3 days earlier The highest temperature also reached $3^{\circ}C$ higher than the control. The pH of compost gradually increased during composting. KMT-199 treated compost reached a plateau of pH 9.32 at day 15 after treatment, and then slowly decreased thereafter. On the other hand. pH of the control steadily increased until day 38 of composting. 29% reduction of gaseous ammonia generation during composting was observed compared to that of the control. KMT-199 amended compost resulted in a higher germination rate of radish seeds than the control. These results indicate that application of microbial inocula facilitates degradation of organic materials, including ammonia during the composting process.

  • PDF

Effects of Operating Parameters on Dissolved Ozone and Phenol Degradation in Ozone Contact Reactor (오존 접촉 반응기의 용존 오존 농도 및 페놀 분해에 미치는 운전변수의 영향)

  • Chung, Jae-Woo;Park, Jeong-Wook;Lee, Chun-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.241-247
    • /
    • 2010
  • The Effects of operating parameters such as initial pH, gaseous ozone concentration, supplied gas flow rate on dissolved ozone concentration and phenol degradation in ozone contact reactor were investigated. Dissolved ozone concentrations were saturated to constant values after a certain ozone contact time. The saturation values were influenced by experimental parameters. Dissolved ozone concentration decreased with the increase of initial pH because the ozone is unstable in high pH regions. The gaseous ozone concentration in a constant gas supply affected the saturation concentration of dissolved ozone and the injection rate of gas with a constant ozone concentration determined the rate to reach dissolved ozone saturation. Effects of operating parameters on phenol degradation were closely related with those of parameters on dissolved ozone concentration. Phenol degradation was enhanced by the increase of initial pH, because the degradation of dissolved ozone gave birth to free radicals which have much higher reactivity with phenol. Increase of gaseous ozone concentration and gas flow rate promoted the phenol degradation through the generation of dissolved ozone which plays the role in phenol degradation. The injection of methanol deteriorated the phenol degradation through the scavenging effect on OH radicals.

Characteristics of Gaseous Dissolved Mercury and Total Mercury in Yangsuri Marsh of Korea (양수리 용늪의 용존 수은 및 총수은 농도 특성에 대한 연구)

  • Yang, Ji-Hye;Han, Young-Ji;Kim, Pyung-Rae;Park, Sang-Young;Seo, Yong-Seok;Lee, Jong-Hwan;Kim, Moon-Kyung;Yi, Seung-Muk;Cho, Kyung-Deok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.801-809
    • /
    • 2012
  • Long-term measurement of total mercury (TM) and dissolved gaseous mercury (DGM) were performed in Yangsuri marsh. Average TM and DGM concentrations were $2.0{\pm}2.0$ ng/L and $15.0{\pm}2.8$ pg/L, respectively, indicating that only 2.6% of TM existed as the form of DGM in Yangsuri marsh. While TM did not show the seasonal variation a statistically high DGM concentration was observed in warm season, indicating that DGM was effectively produced by strong solar radiation and high water temperature. There was no relationship between TM and DGM concentrations in Yangsuri marsh, as observed in other studies. DGM in Yangsuri marsh was supersaturated for most of sampling period; therefore, one can conclude that $Hg^0$ in water surface can readily volatilize to the atmosphere.

Characteristics of Atmospheric Speciated Gaseous Mercury in Chuncheon, Korea (춘천시 대기 중 가스상 수은 종 농도 특성에 관한 연구)

  • Gan, Sun-Yeong;Yi, Seung-Muk;Han, Young-Ji
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.382-391
    • /
    • 2009
  • Atmospheric speciated mercury concentrations including total gaseous mercury (TGM) and reactive gaseous mercury (RGM) were measured in Chuncheon from March 2006 to November 2008. Average concentrations were 2.10 ${\pm}$ 1.50 ng/$m^3$ and 3.00 ${\pm}$ 3.14 pg/$m^3$ for TGM and RGM, respectively. RGM concentrations were higher during daytime than nighttime probably because of high photochemical activities. We found that RGM concentration considerably increased as ozone increased when fog occurred, indicating that ozone was the important oxidant for $Hg^0$ in aqueous phase. TGM concentration showed positive correlations with CO and $PM_{10}$ which can transport in long-range, but there was no correlation with $NO_2$. Considering that major source of mercury is combustion process, this result showed that local sources did not significantly impact on TGM concentration in Chuncheon. Five-day backward trajectories were calculated for the samples representing high and low concentrations of TGM, and determined that industrialized area of China including Shenyang and Beijing influenced TGM concentrations in Chuncheon.

Changes of Total Gaseous Mercury Concentration Levels and the Associated Environmental Conditions in Seoul, Korea (12년 차이를 두고 본 서울 한남동 지역 대기 중 수은의 분포특성과 환경요인의 비교)

  • Kim, Min-Young;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.237-247
    • /
    • 2001
  • The concentrations of gaseous mercury (Hg) determined between two different time periods of the late 1980s and the late 1990s were compared to account for the effects of changes between source/sink relationships of atmospheric Hg in an urban area. The Hg concentration levels were different remarkably between the two time periods due possibly to changes in source/sink relationships. The results showed that the Hg levels in the former period were measured to be 14.4${\pm}$9.56ngm$^{-3}$ (N = 2714), whereas those of the latter period were characterized by approximately three-fold decreased values of 5.34${\pm}$3.92 ngm$^{-3}$ (N=2576). Using two independent measurement data sets, we examined the patterns of Hg distribution at different time scales. When analyzed over 24 hour scale, these data sets exhibited two distinctive distribution patterns. The former period showed enhanced concentration levels during daytime, while the latter period showed relative depletion during daytime. The patterns of the two data sets were also examined over seasonal scale. The results of two different time periods consistently showed the occurrences of maximum seasonal values during winter. The former period was characterized by seasonal patterns of fuel consumption with excessive Hg levels during winter. Conversely, no distinctive trend was apparent for the latter period with slight changes in concentration levels across seasons. In order to analyze the factors affecting Hg distributions between two different periods, we conducted both correlation and factor analysis on both all data sets and on seasonally divided data groups. The results of these analyses consistently indicate that the Hg concentration levels for two different time periods are regulated by distinctive source processes that are characteristic of each period.

  • PDF