• Title/Summary/Keyword: Gaseous

Search Result 1,368, Processing Time 0.022 seconds

Study on basic characteristics for utilization of bituminous pyrolysis by-products (인도네시아 역청 열분해 무기 부산물의 활용을 위한 기초 특성 연구)

  • Jang, Jung Hee;Han, Gi Bo;Park, Cheon-Kyu;Jeon, Cheol-Hwan;Kim, Jae-Kon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.892-898
    • /
    • 2017
  • In this study, the basic properties of recoverable gaseous and solid materials were investigated from heavy oil contained in the resources. The basic characteristics of pyrolysis reaction for the conversion of bituminous oil to pyrolysis various temperature were investigated. The characteristics of gas and solid phase byproducts were also investigated with a laboratory scale fixed bed reactor according to various reaction temperature. As a result, it was confirmed that the oil yield was about 17% at $550^{\circ}C$ and $CH_4$, $CaCO_3$ and CaO could be recovered as by-products.

Recycling and refining of tantalum scraps by electron beam melting (전자빔용해법(溶解法)에 의한 탄탈럼 스크랩의 재활용(再活用) 및 정련(精鍊))

  • Lee, Back-Kyu;Oh, Jung-Min;Choi, Good-Sun;Kim, Hyung-Seok;Lim, Jae-Won
    • Resources Recycling
    • /
    • v.21 no.2
    • /
    • pp.59-65
    • /
    • 2012
  • The refining effect of tantalum by electron beam melting(EBM) process for recycling tantalum scraps was investigated in the study. The purity of the tantalum metals refined by EBM was evaluated using glow discharge mass spectrometry (GDMS). From the result of GDMS, most impurities in the tantalum metals were removed by EBM down to a few mass ppm levels. The purity of the refined tantalum scraps was improved up to 5N (99.9991%) from 4 N (99.996%) of the initial tantalum scraps. The amount of metallic impurities in the tantalum was decreased from 30 ppm to 8 ppm. In addition, the gaseous impurities in the tantalum were decreased from 470 ppm to 50 ppm. Therefore a possibility of refining method for recycling tantalum scraps by EBM process was confirmed in this study.

Preparation of Vanadium Dioxide by Hydrogen Reduction of Vanadium Pentoxide and its Thermochromic Properties (오산화바나듐의 수소 환원에 의한 이산화바나듐의 제조 및 열변색 특성)

  • Choi, Seung Hoon;Lee, Chun Boo
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.61-66
    • /
    • 2017
  • Vanadium Dioxide has been investigated for use as a "spectrally-selective" window coating to block infrared transmission and reduce the loss of building interior heat through windows. The preparation of thermochromic $VO_2$ powder by the reductive reaction with hydrogen was studied. The reductive reaction method has many advantages of easy and mass production of $VO_2$ powder according to controlled reaction without semi-conductor equipments like sputter and beam evaporator. The reaction temperature, time, concentration of reductive gas, post-annealing condition and W addition as dopant would affect the characterization of $VO_2$ powder and its thermochromism. Many applications for electrical device and energy-saving technologies is expected.

Physical Properties of Rigid Polyurethane Foams Prepared by Co-Blowing Agents (Co-blowing agent에 따른 경질 폴리우레탄 폼의 물성 변화 연구)

  • Kim Sang Bum;Koh Sung Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.1-7
    • /
    • 2004
  • The physical properties of rigid polyurethane foam(PUF) synthesized using various types of blowing agents such as water, HFC-365mfc, HFC-245fa, HCFC-l4lb, CFC-11 and n-pentane were studied. The blending effect of blowing agents were also studied. The thermal conductivity, reaction rate, and cell morphology of the PUF with various blending ratio of blowing agents were investigated. The PUF blown by water shows the highest compressive strength among other single blowing agents. The thermal conductivity of PUFs blown by HFC-245fa and HFC-365mfc are close to that of PUFs blown by CFC-11. When HFC-365mfc was mixed with HFC-245fa(30mo1e$\%$) as coblowing agent, the mechanical property shows the highest value among other coblowing agents. It is that the thermal conductivity of PUFs depends on cell size of PUFs as well as thermal conductivity of blowing agent in gaseous form.

  • PDF

Effects of Heme Oxygenase System on the Cyclooxygenase in the Primary Cultured Hypothalamic Cells

  • Lee, Hae-Uk;Lee, Hee-Jee;Park, Ha-Young;Lee, Sang-Ho;Jang, Choon-Gon;Lee, Seok-Yong
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.607-612
    • /
    • 2001
  • Endogenous carbon monoxide (CO) shares with nitric oxide (NO) a role as a putative neural messenger in the brain. Both gases are believed to modulate CNS function via an increase in cytoplasmic cGMP concentrations secondary to the activation of soluble guanylate cyclase (sGC). Recently CO and NO were proposed as a possible mediator of febrile response in hypothalamus. NO has been reported to activate both the constitutive and inducible isoform of the cyclooxygenase (COX). Thus, we investigated whether CO arising from heme catabolism by heme oxygenate (HO) is involved in the febrile response via the activation of COX in the hypothalamus. $PGE_2$ which is a final mediator of febrile response released from primary cultured hypothalamic cells was taken as a marker of COX activity. $PGE_2$ concentration was measured with EIA kits. Exogenous CO (CO-saturated medium) and hemin (a substrate and potent inducer of HO) evoked an increase in $PGE_2$ release from hypothalamic cells, and these effects were blocked by methylene blue (an inhibitor of sGC). And membrane permeable cGMP analogue, dibutyryl-cGMP elicited significant increases in $PGE_2$release. These results suggest that there may be a functional link between HO and COX enzymatic activities. The gaseous product of hemin through the HO pathway, CO, might play a role through the modulation of the COX activity in the hypothalamus.

  • PDF

Effect of Mn-addition on Catalytic Activity of $Mn/In_2O_3$ in Methane Activation

  • Park, Jong Sik;Jun Jong Ho;Kim Yong Rok;Lee Sung Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1058-1064
    • /
    • 1994
  • Mn/In$_2O_3$ systems with a variety of Mn mol${\%}$ were prepared to investigate the effect of Mn-addition on the catalytic activity of Mn/In$_2O_3$ in the oxidative coupling of methane. The oxidative coupling of methane was examined on pure In$_2O_3$ and Mn/In$_2O_3$ catalysts by cofeeding gaseous methane and oxygen under atmospheric pressure between 650 and 830 $^{\circ}C$. Although pure In$_2O_3$ showed no C$_2$ selectivity, both the C$_2$ yield and the C$_2$ selectivity were increased by Mn-doping. The 5.1 mol${\%}$ Mn-doped In$_2O_3$ catalyst showed the best C$_2$ yield of 2.6${\%}$ with a selectivity of 19.1${\%}$. The electrical conductivities of pure and Mn-doped In$_2O_3$ systems were measured in the temperature range of 25 to 100 $^{\circ}C$ at PO$_2$'S of 1 ${\times}$ 10$^{-7}$ to 1 ${\times}$ 10 $^{-1}$ atm. The electrical conductivities were decreased with increasing Mn mol${\%}$ and PO$_2$, indicating the specimens to be n-type semiconductors. Electrons serve as the carriers and manganese can act as an electron acceptor in the specimens. Manganese ions doped in In$_2O_3$ inhibit the ionization of neutral interstitial indium or the transfer of lattice indium to interstitial sites and increase the formation of oxygen vacancy, giving rise to the increase of the concentration of active oxygen ion on the surface. It is suggested that the active oxygen species adsorbed on oxygen vacancies are responsible for the activation of methane.

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.

Evaluation of Visible-light activation of Cu2O-TiO2 (P-N type) Semiconductor Nanomaterials prepared by Ultrasonic-assisted Synthesis (초음파 합성 적용 Cu2O-TiO2 (P-N 타입) 반도체 나노물질의 가시광 활성 평가)

  • Shin, Seung-ho;Choi, Jeong-Hak;Kim, Ji-hoon;Lee, Joon Yeob
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.971-981
    • /
    • 2019
  • This study evaluated the photocatalytic oxidation efficiency of volatile organic compounds by $Cu_2O-TiO_2$ under visible-light irradiation. $Cu_2O-TiO_2$ was synthesized by an ultrasonic-assisted method. The XRD result indicated successful p-n type photocatalysts. However, no diffraction peaks belonging to $TiO_2$ were observed for the $Cu_2O-TiO_2$. The Uv-vis spectra result revealed that the synthesized $Cu_2O-TiO_2$ can be activated under visible-light irradiation. The FE-TEM/EDS result showed the formation of synthesized nanocomposites in the commercial P25 $TiO_2$, the undoped $TiO_2$, and $Cu_2O-TiO_2$ and componential analysis in the undoped $TiO_2$ and $Cu_2O-TiO_2$. The photocatalytic oxidation efficiencies of benzene, toluene, ethylbenzene, and o-xylene with $Cu_2O-TiO_2$ were higher than those of P25 $TiO_2$ and undoped $TiO_2$. These results indicate that the prepared $Cu_2O-TiO_2$ photocatalyst can be applied effectively to control gaseous BTEX.

Spray Characteristics of Swirl-coaxial Injector According to the Recess Length and Injection Pressure Variation (리세스 길이 및 분사압력 변이에 따른 스월 동축형 인젝터의 분무특성)

  • Bae, Seong Hun;Kwon, Oh Chae;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.68-76
    • /
    • 2016
  • This research is carried out for the performance evaluation of the injector that is one of the critical components of bipropellant-rocket-engine. Spray characteristics are investigated in detail according to the recess length and injection pressure on the swirl-coaxial-injector using gaseous methane and liquid oxygen as propellants. A visualization is conducted by the Schlieren photography that is composed of a light source, concave mirrors, knife, and high-speed-camera. A hollow-cone-shape is identified in the liquid spray that is spread only by inner injector and the spray angle is decreased due to the diminution of swirl strength in accordance with the increase of the length of injector orifice. When the injector sprays the liquid through the inner injector with the aid of gas through the outer injector, the spray angle in external mixing region tends to increase with rise of the recess length, while in internal mixing region, it is decreased. It is also confirmed that the same tendency of the spray angle with recess length appears irrespective of the injection pressure of liquid spray.

Development Study of A Precooled Turbojet Engine for Flight Demonstration

  • Sato, Tetsuya;Taguchi, Hideyuki;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.109-114
    • /
    • 2008
  • This paper presents the development status of a subscale precooled turbojet engine "S-engine" for the hypersonic cruiser and space place. S-engine employs the precooled-cycle using liquid hydrogen as fuel and coolant. It has $23cm{\times}23cm$ of rectangular cross section, 2.6 m of the overall length and about 100 kg of the target weight employing composite materials for a variable-geometry rectangular air-intake and nozzle. The design thrust and specific impulse at sea-level-static(SLS) are 1.2 kN and 2,000 sec respectively. After the system design and component tests, a prototype engine made of metal was manufactured and provided for the system firing test using gaseous hydrogen in March 2007. The core engine performance could be verified in this test. The second firing test using liquid hydrogen was conducted in October 2007. The engine, fuel supplying system and control system for the next flight test were used in this test. We verified the engine start-up sequence, compressor-turbine matching and performance of system and components. A flight test of S-engine is to be conducted by the Balloon-based Operation Vehicle(BOV) at Taiki town in Hokkaido in October 2008. The vehicle is about 5 m in length, 0.55 m in diameter and 500 kg in weight. The vehicle is dropped from an altitude of 40 km by a high-altitude observation balloon. After 40 second free-fall, the vehicle pulls up and S-engine operates for 60 seconds up to Mach 2. High altitude tests of the engine components corresponding to the BOV flight condition are also conducted.

  • PDF