• 제목/요약/키워드: Gas-spring

검색결과 218건 처리시간 0.027초

차량 장착상태에서의 가스 스프링 동적 특성 연구 (A Study on the Dynamic Characteristics of the Gas Spring on the Automotive Application)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권4호
    • /
    • pp.15-20
    • /
    • 2015
  • Unlike a typical metal spring, a gas spring uses compressed gas contained in a cylinder and compressed by a piston to exert a force. A common application includes automobiles where gas spring are incorporated into the design of open struts that support the weight of tail gate. They are also used in furniture such as office chairs, and in medical and aerospace applications. The gas spring works by the application of pressurized gas (nitrogen) contained in a cylinder. The internal pressure of the gas spring greatly exceeds atmospheric pressure. This differential in pressure exists at any rod position and generates an outward force on the rod, making the gas spring extend. In this paper, we investigated the dynamic characteristics of a gas spring on an automotive tail gate system.

A novel nonlinear gas-spring TMD for the seismic vibration control of a MDOF structure

  • Rong, Kunjie;Lu, Zheng
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.31-43
    • /
    • 2022
  • A nonlinear gas-spring tuned mass damper is proposed to mitigate the seismic responses of the multi-degree-of-freedom (MDOF) structure, in which the nine-story benchmark model is selected as the controlled object. The nonlinear mechanical properties of the gas-spring are investigated through theoretical analysis and experiments, and the damper's control parameters are designed. The control performance and damping mechanism of the proposed damper attached to the MDOF structure are systematically studied, and its reliability is also explored by parameter sensitivity analysis. The results illustrate that the nonlinear gas-spring TMD can transfer the primary structure's vibration energy from the lower to the higher modes, and consume energy through its own relative movement. The proposed damper has excellent "Reconciling Control Performance", which not only has a comparable control effect as the linear TMD, but also has certain advantages in working stroke. Furthermore, the control parameters of the gas-spring TMD can be determined according to the external excitation amplitude and the gas-spring's initial volume.

고압 밀폐 가스 스프링에서의 열전달 효과 수치해석 및 실험적 검증 (The Numerical Analysis and Experimental Verification of the Heat Transfer Effect on the Highly Pressurized Gas Spring)

  • 한인식;최교준;김재용;이윤복
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.87-97
    • /
    • 2013
  • Recently the use of gas spring in the combat and commercial vehicle's suspension is increasing. Because of its nonlinear characteristics, the gas spring can support wide range of dynamic loads and gives good ride quality. In design of gas spring, isothermal and adiabatic processes are applied generally, but those processes could not produce heat transfer effect in the simulation. So in this study, heat transfer differential equation and BWR/Ideal state equation are used to calculate the pressure of gas spring which is changing with time. The numerical analysis showed that the pressure of gas spring forms a hysteresis loop in the both of the state equations. But the peak pressure value of BWR equation over 0.1Hz frequency are higher than that of adiabatic process. And the test results showed that the differences between test results and ideal gas equation are smaller than those of BWR equation, so the ideal equation is more accurate than BWR equation in this case.

차량용 가스스프링의 최적설계에 관한 연구 (A Study on the Optimal Design of Automotive Gas Spring)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.45-50
    • /
    • 2017
  • The gas spring is a hydropneumatic adjusting element, consisting of a pressure tube, a piston rod, a piston and a connection fitting. The gas spring is filled with compressed nitrogen within the cylinder. The filling pressure acts on both sides of the piston and because of area difference it produces an extension force. Therefore, a gas spring is similar in function compare to mechanical coil spring. Conversely, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL (Nonlinear Programming by Quadratic Lagrangian) and GA (genetic algorithm) for optimization. The NLPQL method builds a quadratic approximation to the Lagrange function and linear approximations to all output constraints at each iteration, starting with the identity matrix for the Hessian of the Lagrangian, and gradually updating it using the BFGS method. On each iteration, a quadratic programming problem is solved to find an improved design until the final convergence to the optimum design. In this study, we conducted optimization design of the gas spring reaction force with NLPQL.

폭연방지기 스프링의 구조해석에 관한 연구 (A study of Flame Arrestor's Spring Structural Analysis)

  • 팜민억;김부기;김준호;최민선;양창조
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2017년도 추계학술발표회
    • /
    • pp.69-69
    • /
    • 2017
  • Flame arrestor as end of line flame arrester for endurance burning prevents a light-back at deflagration and stabilized burning (during and after endurance burning) of potentially explosive vapor-air and gas-air mixtures at the end of vent pipes. In a flame arrestor, spring is an important part. The spring load as well as the spring's elasticity determine when the hood is opened. In addition, the spring have to work in high temperature condition due to gas burning. Therefore, it is necessary to analyze mechanical load and elasticity of spring when gas is burned. Based on the dynamic calculation on working process of a specific flame arrestor, analysis of spring is taken. A three dimensional model for spring burned in flame arrestor by using CFD simulation. Results of the CFD analysis are input in FEM simulation to analyze structure of the spring. The simulation results can predict and estimate the spring's load and elasticity at variation of the spring's deflection. Moreover, the obtained result can provide makers with references to optimize design of spring as well as flame arrestor.

  • PDF

가스스프링 실린더내의 오리피스 홀을 갖는 피스톤 거동에 관한 연구 (A study on the behavior of the piston with orifice hole in the cylinder of a gas spring)

  • 정남균
    • 한국산학기술학회논문지
    • /
    • 제20권12호
    • /
    • pp.125-130
    • /
    • 2019
  • 가스스프링은 그 사용 목적에 따라 다양한 설계가 가능하여 많은 분야에서 사용되고 있고 그 사용량도 계속하여 증가하고 있다. 본 연구에서는 가스스프링을 압축할 경우 반발력을 감소시키고 피스톤이 복귀할 때 저속으로 복귀할 수 있도록 설계된, 오리피스 홀을 갖는 피스톤의 가스스프링 실린더 내부에서의 거동을 전산유체해석을 이용하여 예측해 보았다. 해석결과 가스스프링 내의 초기 가스압을 일정 수준 이상으로 증가시키면 피스톤의 복귀속도가 시간에 따라 감소하지 않고 일정하게 유지됨을 알 수 있었다. 오리피스 홀 사이즈가 피스톤 복귀속도에 미치는 영향을 해석을 통해 알아보았다. 오리피스 홀 사이즈를 줄이게 되면 피스톤 양단의 압력 차가 증가하여 피스톤 전진속도가 감소하게 되고 보다 등속으로 운동하게 됨을 알 수 있었다. 마지막으로 피스톤의 속도가 일정하다는 가정에서 초기 가스압에 따른 피스톤의 복귀속도를 이론적인 방법으로 도출하였고, 여러 초기 가스압에 대한 해석 결과와 비교하였다. 비교결과 이론적으로 도출한 해와 해석결과로부터 얻어진 결과 값이 거의 일치함을 알 수 있었다.

자동차용 가스 스프링의 반력 특성에 관한 연구 (A Study on the Reaction Force Characteristics of the Gas Spring for the Automotive)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권4호
    • /
    • pp.35-40
    • /
    • 2015
  • A gas spring provides support force for lifting, positioning, lowering, and counterbalancing weights. It offers a wide range of reaction force with a flat force characteristic, simple mounting, compact size, speed controlled damping, and cushioned end motion. The most common usage is as a support on a horizontally hinged automotive tail gate. However, its versatility and ease of use has been applied in many other industrial applications ranging from office equipment to off-road vehicles. The cylinder of a gas spring is filled with compressed nitrogen gas, which is applied with equal pressure on both sides of the piston. The surface area of the rod side of the piston is smaller than the opposite side, producing a pushing force. The magnitude of the reaction force is determined by the cross-sectional area of the piston rod and the internal pressure inside the cylinder. The reaction force is influenced by many design parameters such as initial chamber volume, diameter ratio, etc. In this paper, we investigated the reaction force characteristics and carried out parameter sensitivity analysis for the design parameters of a gas spring.

바이메탈을 이용한 자동차용 가스 스프링 구조해석에 관한 연구 (A Study on the Auto-moblie Gas Spring Structural Analysis Using of Bimetal)

  • 박철우;김호윤
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.131-137
    • /
    • 2013
  • Gas springs have been widely used in motor vehicles as well as in most areas of industry. Instead of coil springs, these gas springs are easily operated to extrusion process or compression process the doors because $N_2$ gas with high pressure and oil are charged in tube. Gas spring sustain the constant elasticity change rate in the high reaction force and long stroke, and they have compact design, appearance and an excellent assembling ability to be mounted easily with any applicatory products. By means of these aspects, gas springs have been widely used in stead of coil springs in the over all industries. In this study, using acommonly used program, ANSYS, the basic research about the heat transfer and equivalent stress change of bimetal.

암 내장형 유기압 현수장치의 동특성 해석 (Analysis of the Dynamic Characteristics of the In-Arm Type Hydropneumatic Suspension Unit)

  • 이홍우;조진래;이진규;장문석;안동수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.519-524
    • /
    • 2003
  • In this paper we discuss the dynamic characteristics of the in-arm type hydropneumatic suspension unit(ISU). For this, two accurate models are introduced. The first one is the Benedict-Webb-Rubin equation which is adopted for the spring behavior of a real gas. This equation is applicable for the high pressure of the nitrogen gas which acts as a spring in ISU system. The second one describes the behavior of a damper, which is divided into four parts - jounce-loading, jounce-unloading, rebound-loading and rebound-unloading. This approach gives a good approximation of the real damper system. For the comparison purpose, the numerical results of the dynamic behavior of ISU system using a real gas and an ideal gas are given in the paper.

  • PDF