• Title/Summary/Keyword: Gas-phase Reduction

Search Result 206, Processing Time 0.029 seconds

Formation of Ti-B-N-C Ceramic Composite Materials via a Gas-Solid Phase Reaction

  • Yoon, Su-Jong
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.50-57
    • /
    • 2006
  • Phase mixtures of Titanium boride, nitride, and carbide powder were produced by the reduction of a mixture of titanium and boron oxides with carbon via a gas-solid phase reaction. Boron oxides produce a vapour phase or decompose to a metal sub-oxide gaseous species when reduced at elevated temperature. The mechanism of BO sub-oxide gas formation from $B_2O_3$ and its subsequent reduction to titanium diboride for the production of uniform size hexagonal platelets is explained. These gaseous phases are critical for the formation of boride, nitride and carbide ceramics. For the production of ceramic phase composite microstructures, the nitrogen partial pressure was the most critical factor. Some calculated equilibrium phase fields has been verified experimentally. The theoretical approach therefore identifies conditions for the formation of phase mixtures. The thermodynamic and kinetic factors that govern the phase constituents are also discussed.

Effects of Non-Absorbable Gases on the Absorption Process of Aqueous LiBr Solution Film in a Vertical Tube (II) (수직관내 리튬브로마이드 수용액막의 흡수과정에 대한 비흡수가스의 영향)

  • Kim, Byeong-Ju;Lee, Chan-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.499-509
    • /
    • 1998
  • In the absorption process of water vapor in a liquid film, the composition of the gas phase, in which a non-absorbable gas is combined with the absorbate influences the transport characteristics remarkably. In the present study, the absorption processes of water vapor into aqueous solution of lithium bromide in the presence of non-absorbable gases were investigated analytically. The continuity, momentum, energy and diffusion equations for the solution film and gas phase were formulated in integral forms and solved numerically. It was found that the mass transfer resistance in gas phase increased with the concentration of non-absorbable gas. However the primary resistance to mass transfer was in the liquid phase. As the concentration of non-absorbable gas in the absorbate increased, the liquid-vapor interfacial temperature and concentration of absorbate in solution decreased, which resulted in the reduction of absorption rate. The reduction of mass transfer rate was found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of an absorber where non-absorbable gases accumulated. At higher non-absorbable gas concentration, the decrease of absorption flux was almost linear to the volumetric concentration of non-absorbable gas.

Integral Analysis of the Effects of Non-absorbable gases on the Heat Mass Transfer of Laminar Falling Film

  • Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.56-66
    • /
    • 1998
  • The absorption process of water vapor in a liquid film is an important process in LiBr-Water absorption system. The composition of the gas phase, in which a non-absorbable gas is combined with the absorbate, influences the transport characteristics. In the present work, the absorption processes of water vapor into aqueous solutions of lithium bromide in the presence of non-absorbable gas are investigated. The continuity, momentum, energy and diffusion equations for the solution film and gas are formulated in integral forms and solved numerically. It is found that the mass transfer resistance in gas phase increases with the concentration of non-absorbable gas. However the primary resistance to mass transfer is in the liquid phase. As the concentration of non-absorbable gas in the absorbate increases, the interfacial temperature and concentration of absorbate in solution decrease, which results in the reduction of absorption rate. The reduction of mass transfer rate is found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of tube where the non-absorbable gas accumulates. At higher non-absorbable gas concentration, the decrease of absorption rate seems to be linear to the concentration of non-absorbable gas.

  • PDF

Greenhouse Gas Management Policy during Construction Execution Phase -Focused on Green Building Rating Systems and Japanese Case- (건축물 시공단계에서의 온실가스 배출 관리 방안 -국내외 친환경 인증제도와 일본 현장의 대응 방안을 중심으로-)

  • Song, Sang Hoon
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.139-150
    • /
    • 2010
  • Until now, the eco-friendly construction (green construction) has been focused on reducing environmental impacts in use(operation and maintenance) phase. Considering the environmental influence along the life cycle of construction project, the impact in execution phase is rather lower than that in use phase. However, that impact is thought to be greatly decreased by well-organized activities. Based on its urgency and requirement for timely action, this study aimed to discuss the greenhouse gas (GHG) reduction plan in execution phase from a broad perspective. To achieve this purpose, the green building rating systems in domestic and foreign countries have been reviewed, and the practice in Japan was investigated. In order to improve current on-site greenhouse gas management, the integration among construction phases, participants, and environmental factors, and institutional supports are required as well as the contractor's efforts.

The Characteristics of Two Phase Flow by Non-Newtonian Fluid for Vertical Up-ward in a Tube (수직 상향유동 배관에서 비뉴톤유체에 의한 2상류의 유동특성)

  • Cha K.O.;Kim J. G.;Che K.S.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.53-59
    • /
    • 1998
  • Flow pattern of air-water two phase flow depends on the conditions of pressure drop, void fraction, and channel geometry. Drag reduction in the two phase flow can be applied to the transport of crude oil, phase change systems such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research on drag reduction in two phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction produced and void fraction by Co-polymer(A611p) addition in the two phase flow system. We find that the maximum point position of local void friction moves from the wall of the pipe to the center of the pipe when polymer concentration increases. Also we find that the polymer solution changes the characteristics of the two phase flow. And then we predict that it is closely related with the drag reduction.

  • PDF

Experimental study on the flow characteristic by the co-polymer A6l1P additive in gas-liquid two-phase vertical up flow (합성 고분자물질 A611P를 첨가한 기액 2상 수직상향의 유동특성에 관한 실험적 연구)

  • 차경옥;김재근;양회준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.398-410
    • /
    • 1998
  • Two-phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and the liquid transportation system. The particular flow pattern depends on the conditions of pressure, flow velocity, and channel geometry. However, the research on drag reduction in two-phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction and void fraction by polymer addition in the two-phase flow system. We find that the polymer solution changes the characteristic of two-phase flow. The peak position of local void friction moves from tile wall of the pipe to the center of the pipe when polymer concentration increase. And then we predict that it is closely related with the frau reduction.

  • PDF

The Study on the Drag Reduction for Gas/Liquid Two Phase Flow (기-액(氣-液) 2상유동(二相流動)시 항력(抗力)에 관(關)한 연구(硏究))

  • Cha, K.O.;Oh, Y.K.;Kim, J.G.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.20-28
    • /
    • 1996
  • It is well known that drag reduction in single phase liquid flow is affected by polymer material, molecular weight, polymer concentration, pipe diameter, and flow velocity. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research of drag reduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction whether polymer is added in the horizontal two phase system or not. Experiment has been conducted in a test section with 24 m of the inner diameter and 1,500 mm of the length. The used polymer materials are two kinds of polyacrylamide[PAAM] and co-polymer[A611P]. The polymer concentration was varied with 50, 100 and 200 ppm under the same experimental conditions. Experimental results were shown that the drag is higher reduced by co-polymer rather than polyanylamide.

  • PDF

Reduction of Grid Size Dependency in DME Spray Modeling with Gas-jet Model (가스 제트 모델을 이용한 DME 분무 해석의 격자 의존성 저감)

  • Oh, Yun-Jung;Kim, Sa-Yop;Lee, Chang-Sik;Park, Sung-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.170-176
    • /
    • 2010
  • This paper describes the grid-size dependency of the conventional Eulerian-Lagrangian method to spray characteristics such as spray penetration and SMD in modeling DME sprays. In addition, the reduction of the grid-size dependency of the present Gas-jet model was investigated. The calculations were performed using the KIVA code and the calculated results were compared to those of experimental result. The results showed that the conventional Eulerian-Laglangian model predicts shorter spray penetration for large cell because of inaccurate calculation of momentum exchange between liquid and gas phase. However, it was shown that the gas-jet model reduced grid-size dependency to spray penetration by calculating relative velocity between liquid and ambient gas based on gas jet velocity.

Effect of $TO_3$ and $NO_2$ on Net Photosynthesis, Transpiration and Accumulation of Nitrite in Sunflower Leaves

  • Park, Shin-Young;Lee, Sang-Chul
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.2
    • /
    • pp.121-129
    • /
    • 1999
  • Photosynthesis and transpiration rates were simultaneously measured in attached sunflower leaves(Helianthus annuusL. cv. Russian Mammoth) during exposure to $NO_2$ and $O_3$ to determine the effect of mixed gan on photosynthesis and the stomatal aperture. The application of $O_3$ alone reduced both the net photosynthetic and transpiration rates. An analysis of the $CO_2$ diffusive resistances indicated that the main cause affecting photosynthesis reduction during $O_3$ exposure was not the internal gas phase of the leaf $(rCO_2^{liq})$ but rather the liquid phase or mesophyll diffusive resistance $(rCO_2^{liq})$, suggesting that there is a very concomitant relation between photosynthetic reduction and $rCO_2^{liq}$. The application of NO2 alone caused a marked reduction of the net photosynthesis yet no significant reduction of transpiration, indicating that NO2 affects the $CO_2$ fixation processes with no inluence on the stomatal aperture. A greter reduction in the photosynthesis of sunflower plants was caused by the application of $NO_2$ alone as compared to a combination of $NO_2$ and $O_3$. $NO_2$ alone reduced the photosynthetic rate by 90%, whereas a mixture of NO2 and O3 reduced it by 50%.

  • PDF

Simulation of Particle Beds with Combustion and Reduction in Steel Making Rotary Kilns (제철용 로터리 킬른 내의 연소 및 환원을 포함한 입자 거동 예측모사 해석)

  • Han, Woojoo;Jang, Kwonwoo;Han, Karam;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.173-175
    • /
    • 2015
  • We simulate the particle bed motions with combustion and reduction in steel making rotary kilns. The particle bed motions are simulated by a Lagrangian approach called Discrete Phase Model (DPM). To reduce the number of tracking particles, the Coarse Grain Model (CGM) was applied. The model for particle motions showed good agreements with experimental results. In addition to the particle motion, the combustion and reduction simulation was performed. The combustion and reduction simulation can consider heat, mass and momentum transfer between the gas phase and particle beds.

  • PDF